



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、提公因式法【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式. (2)要把一个多项式分解到每一个因式不能再分解为止. (3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做
2、公因式.要点诠释:(1)公因式必须是每一项中都含有的因式. (2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:公因式的系数是各项系数的最大公约数.字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“”号,使括号内的第一
3、项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“1”或“1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由(1);(2);(3);(4);(5)【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断.【答案与解析】 解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的、都不是整式,所以(4)(5)也不是因式分解,只
4、有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解等式的右边必须是整式因式积的形式举一反三:【变式】下列变形是因式分解的是 ( ) A. B. C. D.【答案】B;类型二、提公因式法分解因式2、把下列各式分解因式:(1)2m(mn)28m2(nm)(2)8a2b+12ab24a3b3【思路点拨】(1)直接提取公因式2m(mn),进而分解因式得出答案;(2)直接提取公因式4ab,进而分解因式得出答案【答案与解析】解:(1)2m(mn)28m2(nm)=2m
5、(mn)(mn)+4m=2m(mn)(5mn);(2)8a2b+12ab24a3b3=4ab(2a3b+a2b2)【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键举一反三:【变式】下列分解因式结果正确的是()A.ab+7abb=b(a+7a) B.3xy3xy+6y=3y(xx2)C.8xyz6xy=2xyz(43xy) D.2a+4ab6ac=2a(a2b+3c)【答案】D.解:A、原式=b(a+7a+1),错误;B、原式=3y(xx+2),错误;C、原式=2xy(4z3xy),错误;D、原式=2a(a2b+3c),正确故选D类型三、提公因式法分解因式的应用3、若、为的三边长,且,则按边分类,应是什么三角形?【答案与解析】解:当时,等式成立,当时,原式变为,得出,是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型.4、对任意自然数(0),是30的倍数,请你判定一下这个说法的正确性,并说说理由.【答案与解析】解:为大于0的自然数,为偶数,15×为30的倍数,即是30的倍数.【总结升华】判断是否为30的倍数,只需要把分解因式,看分解后有没有能够整除30的因式.举一反三:【变式】说明能被7整除.【答案】解:所以能被7整除.5、已知xy=3,满足x+y=2,求代数式xy+xy的值【思路点拨】将原式提取公因式xy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 42238-2022表面活性剂环氧丙烷聚合型表面活性剂中游离环氧丙烷的测定气相色谱法
- GB/T 42230-2022钢板卷道路运输捆绑固定要求
- GB/T 12406-2022表示货币的代码
- DZ/T 0032-1992地质勘查钻探岩矿心管理通则
- CJ/T 519-2018市政管道电视检测仪
- CJ/T 224-2012电子远传水表
- CJ/T 114-2000高密度聚乙烯外护管聚氨酯泡沫塑料预制直埋保温管
- CJ/T 111-2000铝塑复合管用卡套式铜制管接头
- CJ 248-2007城镇污水处理厂污泥处置园林绿化用泥质
- 系统分析师考试阶段性总结试题及答案
- 北京版二年级英语下册(全套)课件
- 检验科生化SOP文件
- 医疗器械临床试验质量管理规范试题
- 运动训练专业毕业论文范文
- 林德气体(江西)有限公司星火有机硅配套空压制氮项目环境影响评价报告书
- 城市轨道交通行车组织教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案课件合集
- 项目施工条件分析
- 2022秋期版2208国开电大专科《政治学原理》网上形考(任务1至4)试题及答案
- TSG 81-2022 场(厂)内专用机动车辆安全技术规程
- TLJ300铜扁线连续挤压生产线使用说明书NEW1复习课程
- 瓷砖店业务员提成方案计划
评论
0/150
提交评论