181勾股定理(2)(用)_第1页
181勾股定理(2)(用)_第2页
181勾股定理(2)(用)_第3页
181勾股定理(2)(用)_第4页
181勾股定理(2)(用)_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、历史因你而改变历史因你而改变 学习因你而精彩学习因你而精彩第十八章第十八章 勾股定理勾股定理18.1 18.1 勾股定理勾股定理( (二)二)勾股定理:勾股定理:直角三角形两直角边的平直角三角形两直角边的平方和等于斜边的平方方和等于斜边的平方活 动 1abcABC如果在如果在Rt ABC中,中,C=90,那么那么222.abc结论变形结论变形c2 = a2 + b2abcABC(1)求出下列直角三角形中未知的边)求出下列直角三角形中未知的边610ACB8A15CB练练 习习302245回答:回答:在解决上述问题时,每个直角三角形需知道几个条件?在解决上述问题时,每个直角三角形需知道几个条件?直

2、角三角形哪条边最长?直角三角形哪条边最长?(2)在长方形)在长方形ABCD中,宽中,宽AB为为1m,长,长BC为为2m ,求,求AC长长1 m2 mACBD2222125ACABBC在在Rt ABC中,中,B=90,由勾股定理可知:由勾股定理可知:活 动 2一个门框尺寸如下图所示一个门框尺寸如下图所示若有一块长若有一块长3米,宽米,宽0.8米的薄木板,问怎样从门框通过?米的薄木板,问怎样从门框通过?若薄木板长若薄木板长3米,宽米,宽1.5米呢?米呢?若薄木板长若薄木板长3米,宽米,宽2.2米呢?为什么?米呢?为什么?ABC1 m2 m木板的宽木板的宽2.2米大于米大于1米,米, 横着不能从门框

3、通过;横着不能从门框通过;木板的宽木板的宽2.2米大于米大于2米,米,竖着也不能从门框通过竖着也不能从门框通过 只能试试斜着能否通过,只能试试斜着能否通过,对角线对角线AC的长最大,因此需的长最大,因此需要求出要求出AC的长,怎样求呢?的长,怎样求呢?有一个边长为有一个边长为50dm 的正方形洞口,想用一的正方形洞口,想用一个圆盖去盖住这个洞口,圆的直径至少多个圆盖去盖住这个洞口,圆的直径至少多长?(结果保留整数)长?(结果保留整数)50dmABCD22225050500071()ACABBCdm 解:解:在在Rt ABC中,中,B=90, AB=BC=50,由勾股定理可知:由勾股定理可知:活

4、 动 3(1)如图,池塘边有两点)如图,池塘边有两点A、B,点,点C是与是与BA方方向成直角的向成直角的AC方向上的一点,测得方向上的一点,测得CB= 60m,AC= 20m ,你能求出,你能求出A、B两点间的距离吗?两点间的距离吗? (结果保留整数)(结果保留整数)例1:一个2.5m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.4m如果梯子顶端A沿墙下滑0.4m,那么梯子底端B也外移0。4m吗? ABCDE 解:在RtABC中, ACB=90 AC2+ BC2AB2 2.42+ BC22.52 BC0.7m由题意得:DEAB2.5mDCACAD2.40.42m在RtDCE中,BE1

5、.50.70.8m0.4m答;梯子底端答;梯子底端B不是外移不是外移0.4m DCE=90 DC2+ CE2DE2 22+ EC22.52 CE1.5m练习练习:如图,一个如图,一个3米长的梯子米长的梯子AB,斜着靠在,斜着靠在竖直的墙竖直的墙AO上,这时上,这时AO的距离为的距离为2.5米米求梯子的底端求梯子的底端B距墙角距墙角O多少米?多少米?如果梯子的顶端如果梯子的顶端A沿墙角下滑沿墙角下滑0.5米至米至C,请同学们请同学们:猜一猜,底端也将滑动猜一猜,底端也将滑动0.5米吗?米吗?算一算,底端滑动的距离近似值算一算,底端滑动的距离近似值是多少是多少? (结果保留两位小数)(结果保留两位

6、小数)例例2:如图,铁路上如图,铁路上A,B两点相距两点相距25km,C,D为两庄,为两庄,DAAB于于A,CBAB于于B,已知,已知DA=15km,CB=10km,现在要在铁路现在要在铁路AB上建一个土特产品收购站上建一个土特产品收购站E,使得,使得C,D两村到两村到E站的距离相等,则站的距离相等,则E站应建在离站应建在离A站多少站多少km处?处?CAEBDx25-x解:解:设设AE= x km,根据勾股定理,得根据勾股定理,得 AD2+AE2=DE2 BC2+BE2=CE2又又 DE=CE AD2+AE2= BC2+BE2即:即:152+x2=102+(25-x)2答:答:E站应建在离站应

7、建在离A站站10km处。处。 X=10则则 BE=(25-x)km1510例例3:在我国古代数学著作在我国古代数学著作九章算术九章算术中记载了一道有趣的问题中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为这个问题意思是:有一个水池,水面是一个边长为10尺的正方形尺的正方形,在水池的中央有一根新生的芦苇,它高出水面在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦尺,如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和这根芦苇的长度各是多少?和这根芦苇的长度各是多少?DABC解解:设水池的深度设水

8、池的深度AC为为X米米,则芦苇高则芦苇高AD为为 (X+1)米米.根据题意得根据题意得:BC2+AC2=AB252+X2 =(X+1)225+X2=X2+2X+1 X=12 X+1=12+1=13(米)答答:水池的深度为水池的深度为12米米,芦苇高为芦苇高为13米米.例例4:矩形矩形ABCD如图折叠,使点如图折叠,使点D落在落在BC边上的边上的点点F处,已知处,已知AB=8,BC=10,求折痕,求折痕AE的长。的长。ABCDFE解解:设设DE为为X,X(8- X)则则CE为为 (8 X).由题意可知由题意可知:EF=DE=X,XAF=AD=1010108 B=9 AB2+ BF2AF282+

9、BF2102 BF6CFBCBF106464 C=90 CE2+CF2EF2(8 X)2+42=X264 16X+X2+16=X280 16X=016X=80X=5例6: 如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是( ). (A)3 (B ) 5 (C)2 (D)1ABABC21分析: 由于蚂蚁是沿正方体的外表面爬行的,故需把正方体展开成平面图形(如图).B活 动 3(3)如图,分别以)如图,分别以Rt ABC三边为边三边为边向外作三个正方形,其面积分别用向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出表示,容易得出S1、S2、S3之间之

10、间有的关系式为有的关系式为 123SSS活 动 3(3)变式:你还能求出)变式:你还能求出S1、S2、S3之间之间的关系式吗?的关系式吗?S1S2S32.(2)如图,两个半圆的面积分别是)如图,两个半圆的面积分别是S1=16,S2=25,则直角三角形的较短的直角边长,则直角三角形的较短的直角边长是是 . 6 21在在RtABC中中, C=90,(1) 已知已知: a=5, b=12, 求求c;(2) 已知已知: b=6, c=10 , 求求a;(3) 已知已知: a=7, c=25, 求求b;(4) 已知已知: a=7, c=8, 求求b 2 一直角三角形的一直角边长为一直角三角形的一直角边长

11、为7, 另两条另两条边长为两个连续整数,求这个直角三角形的边长为两个连续整数,求这个直角三角形的周长周长3如图,受台风如图,受台风“麦莎麦莎”影响,一棵树在影响,一棵树在离地面离地面4米处断裂,树的顶部落在离树跟底米处断裂,树的顶部落在离树跟底部部3米处,这棵树折断前有多高?米处,这棵树折断前有多高?应用知识回归生活应用知识回归生活4米米3米米4.一架一架5米长的梯子,斜立靠在一竖直的墙米长的梯子,斜立靠在一竖直的墙上,这是梯子下端距离墙的底端上,这是梯子下端距离墙的底端3米,若梯子米,若梯子顶端下滑了顶端下滑了1米米,则梯子底端将外移(则梯子底端将外移( )5.如图,要在高如图,要在高3m,

12、斜坡斜坡5m的楼梯表面铺的楼梯表面铺地毯,地毯的长度至少需(地毯,地毯的长度至少需( )米)米6.把直角三角形两条直角边把直角三角形两条直角边同时扩大到原来的同时扩大到原来的3倍,则其倍,则其斜边(斜边( )A.不变不变 B.扩大到原来的扩大到原来的3倍倍C.扩大到原来的扩大到原来的9倍倍 D.减小到原来的减小到原来的1/3ABC17B1如图如图:是一个长方形零件图,根据所给的是一个长方形零件图,根据所给的尺寸尺寸,求两孔中心求两孔中心A、B之间的距离之间的距离ABC409016040应用知识回归生活应用知识回归生活 2小明妈妈买了一部小明妈妈买了一部29英寸(英寸(74厘米)的电视厘米)的电

13、视机小明量了电视机的屏幕,发现屏幕只有机小明量了电视机的屏幕,发现屏幕只有58厘米厘米长和长和46厘米宽他觉得一定是售货员搞错了厘米宽他觉得一定是售货员搞错了,你同意你同意他的想法吗?你能解释这是为什么吗?他的想法吗?你能解释这是为什么吗?应用知识回归生活应用知识回归生活在平静的湖面上,有一支红莲,高出水面在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,米,一阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为离为2米,问这里水深是米,问这里水深是_m。 小明想知道学校旗杆的高,他发现旗杆顶端的绳子小明想知道学校旗杆的高,他发

14、现旗杆顶端的绳子垂到地面还多垂到地面还多1米,当他把绳子的下端拉开米,当他把绳子的下端拉开5米后,米后,发现下端刚好接触地面,求旗杆的高度。发现下端刚好接触地面,求旗杆的高度。小东拿着一根长竹竿进一个宽为小东拿着一根长竹竿进一个宽为3米的城门,他米的城门,他先横着拿不进去,又竖起来拿,结果竹竿比城门先横着拿不进去,又竖起来拿,结果竹竿比城门高高1米,当他把竹竿斜着时,两端刚好顶着城门米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长多少米?的对角,问竹竿长多少米?解解:设竹竿长设竹竿长X米米,则城门高为则城门高为 (X1)米米.根据题意得根据题意得:32+ (X1) 2 =X29+X2 2

15、X+1=X210 2X=02X=10X=5答答:竹竿长竹竿长5米米13在一棵树的在一棵树的10米高处有两只猴子,一只米高处有两只猴子,一只猴子爬下树走到离树猴子爬下树走到离树20米处的池塘的米处的池塘的A处。处。另一只爬到树顶另一只爬到树顶D后直接跃到后直接跃到A处,距离以直处,距离以直线计算,如果两只猴子所经过的距离相等,线计算,如果两只猴子所经过的距离相等,则这棵树高则这棵树高_米。米。 15ABCDEF如右图将矩形如右图将矩形ABCD沿直线沿直线AE折叠折叠,顶点顶点D恰好落在恰好落在BC边上边上F处处,已知已知CE=3,AB=8,则则BF=_。如图,有一个直角三角形纸片,两直直角边如图

16、,有一个直角三角形纸片,两直直角边AC=6cm,BC=8cm,现将直角边现将直角边AC沿沿CAB的的角平分线角平分线AD折叠,使它落在斜边折叠,使它落在斜边AB上,且上,且与与AE重合,你能求出重合,你能求出CD的长吗?的长吗?AECDBE例例1、如图,是一个三级台阶,它的每一级的长、宽和、如图,是一个三级台阶,它的每一级的长、宽和高分别等于高分别等于5cm,3cm和和1cm,A和和B是这个台阶的两个是这个台阶的两个相对的端点,相对的端点,A点上有一只蚂蚁,想到点上有一只蚂蚁,想到B点去吃可口的点去吃可口的食物食物.请你想一想,这只蚂蚁从请你想一想,这只蚂蚁从A点出发,沿着台阶面点出发,沿着台

17、阶面爬到爬到B点,最短线路是多少?点,最短线路是多少?BAABC531512一、台阶中的最值问题一、台阶中的最值问题 AB2=AC2+BC2=169, AB=13.如图,是一个三级台阶,它的每一级的长、宽、如图,是一个三级台阶,它的每一级的长、宽、高分别为高分别为20dm、3dm、2dm,A和和B是这个台阶是这个台阶两个相对的端点,两个相对的端点,A点有一只蚂蚁,想到点有一只蚂蚁,想到B点去点去吃可口的食物,则蚂蚁沿着台阶面爬到吃可口的食物,则蚂蚁沿着台阶面爬到B点的最点的最短路程是短路程是_ 3 2 20 B A25cm二、圆柱二、圆柱(锥锥)中的最值问题中的最值问题例2、 有一圆形油罐底面

18、圆的周长为24m,高为6m,一只老鼠从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?AB分析:由于老鼠是沿着圆柱的表面爬行的,故需把圆柱展开成平面图形.根据两点之间线段最短,可以发现A、B分别在圆柱侧面展开图的宽1m处和长24m的中点处,即AB长为最短路线.(如图)解:AC = 6 1 = 5 ,BC = 24 = 12, 由勾股定理得 AB2= AC2+ BC2=169,AB=13(m) .21BAC如图,一个圆柱形纸筒的底面周长是如图,一个圆柱形纸筒的底面周长是40cm,高,高是是30cm,一只小蚂蚁在圆筒底的,一只小蚂蚁在圆筒底的A处,它想吃处,它想吃到上底与下底面中间与到上底与下底面中间与A点相对的点相对的B点处的蜜糖,点处的蜜糖,试问蚂蚁爬行的最短的路程是多少?试问蚂蚁爬行的最短的路程是多少?25cm三、正方体中的最值问题三、正方体中的最值问题例3、如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是( ). (A)3 (B) 5 (C)2 (D)1AB分析: 由于蚂蚁是沿正方体的外表面爬行的,故需把正方体展开成平面图形(如图).CABC21在长长30cm30cm、宽、宽50 cm50 cm、高、高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论