波谱学-紫外红外_第1页
波谱学-紫外红外_第2页
波谱学-紫外红外_第3页
波谱学-紫外红外_第4页
波谱学-紫外红外_第5页
已阅读5页,还剩114页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-4-29第十一章第十一章 紫外吸收光谱紫外吸收光谱分析法分析法一、一、 紫外吸收光谱的产生紫外吸收光谱的产生formation of UV二、二、 有机物紫外吸收光谱有机物紫外吸收光谱ultraviolet spectrometry of organic compounds第一节第一节 紫外吸收紫外吸收光谱分析基本原理光谱分析基本原理ultraviolet spectrometry, UVprinciples of UV2022-4-29一、紫外吸收光谱的产生一、紫外吸收光谱的产生 formation of UV1.1.概述概述紫外可见吸收光谱:分子价电子能级跃迁。波长范围:100-

2、800 nm.(1) 远紫外光区: 100-200nm (2) 近紫外光区: 200-400nm(3)可见光区:400-800nm 250 300 350 400nm1234e e 可用于结构鉴定和定量分析。 电子跃迁的同时,伴随着振动转动能级的跃迁;带状光谱。2022-4-292.2.物质对光的选择性吸收及吸收曲线物质对光的选择性吸收及吸收曲线M + 热M + 荧光或磷光E = E2 - E1 = h量子化 ;选择性吸收吸收曲线与最大吸收波长 max 用不同波长的单色光照射,测吸光度;M + h M *基态基态 激发态激发态E1 (E) E22022-4-29对吸收曲线的说明:对吸收曲线的说

3、明:同一种物质对不同波长光的吸光度同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为不同。吸光度最大处对应的波长称为最最大吸收波长大吸收波长maxmax不同浓度的同一种物质,其吸收曲不同浓度的同一种物质,其吸收曲线形状相似线形状相似maxmax不变。而对于不同物质,不变。而对于不同物质,它们的吸收曲线形状和它们的吸收曲线形状和maxmax则不同。则不同。吸收曲线可以提供物质的结构信息,并作为物质定性分析的吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。依据之一。2022-4-29对吸收曲线的说明:对吸收曲线的说明:不同浓度的同一种物质,在某一定波长下吸光度不同浓度的同

4、一种物质,在某一定波长下吸光度 A A 有差异,在有差异,在maxmax处吸光度处吸光度A A 的差异最大。此特性可作为的差异最大。此特性可作为物质定量分析的依据。物质定量分析的依据。在在maxmax处吸光度随浓度变化的幅度最大,所以测定处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸收曲线是定量分析中选择入射光波长的重要最灵敏。吸收曲线是定量分析中选择入射光波长的重要依据。依据。2022-4-293.3.电子跃迁与分子吸收光谱电子跃迁与分子吸收光谱物质分子内部三种运动形式:物质分子内部三种运动形式: (1 1)电子相对于原子核的运动;)电子相对于原子核的运动; (2 2)原子核在其平衡位置附

5、近的相对振动;)原子核在其平衡位置附近的相对振动; (3 3)分子本身绕其重心的转动。)分子本身绕其重心的转动。分子具有三种不同能级:电子能级、振动能级和转动能级分子具有三种不同能级:电子能级、振动能级和转动能级三种能级都是量子化的,且各自具有相应的能量。三种能级都是量子化的,且各自具有相应的能量。分子的内能:电子能量分子的内能:电子能量Ee 、振动能量振动能量Ev 、转动能量、转动能量Er 即即: EEe+Ev+Er evr 2022-4-29能级跃迁能级跃迁 电子能级间跃电子能级间跃迁的同时,总伴迁的同时,总伴随有振动和转动随有振动和转动能级间的跃迁。能级间的跃迁。即电子光谱中总即电子光谱

6、中总包含有振动能级包含有振动能级和转动能级间跃和转动能级间跃迁产生的若干谱迁产生的若干谱线而呈现宽谱带线而呈现宽谱带。2022-4-29说明:说明:(1 1) 转动能级间的能量差转动能级间的能量差r r:0.0050.0050.0500.050eVeV,跃迁跃迁产生吸收光谱位于远红外区。远红外光谱或分子转动光谱;产生吸收光谱位于远红外区。远红外光谱或分子转动光谱;(2 2) 振动能级的能量差振动能级的能量差v v约为:约为:0.050.05eVeV,跃迁产跃迁产生的吸收光谱位于红外区,红外光谱或分子振动光谱;生的吸收光谱位于红外区,红外光谱或分子振动光谱;(3 3) 电子能级的能量差电子能级的

7、能量差e e较大较大1 12020eVeV。电子跃迁产生电子跃迁产生的吸收光谱在紫外的吸收光谱在紫外可见光区,紫外可见光区,紫外可见光谱或分子的电可见光谱或分子的电子光谱;子光谱;2022-4-29说明:说明: (4 4)吸收光谱的波长分布是由产生谱带的跃迁能级间的)吸收光谱的波长分布是由产生谱带的跃迁能级间的能量差所决定,反映了分子内部能级分布状况,是物质定性能量差所决定,反映了分子内部能级分布状况,是物质定性的依据;的依据; (5 5)吸收谱带的强度与分子偶极矩变化、跃迁几率有关,)吸收谱带的强度与分子偶极矩变化、跃迁几率有关,也提供分子结构的信息。通常将在最大吸收波长处测得的摩也提供分子

8、结构的信息。通常将在最大吸收波长处测得的摩尔吸光系数尔吸光系数maxmax也作为定性的依据。也作为定性的依据。不同物质的不同物质的maxmax有时有时可能相同,但可能相同,但maxmax不一定相同;不一定相同; (6 6)吸收谱带强度与该物质分子吸收的光子数成正比,定)吸收谱带强度与该物质分子吸收的光子数成正比,定量分析的依据。量分析的依据。2022-4-29二、有机物吸收光谱与电子跃迁二、有机物吸收光谱与电子跃迁ultraviolet spectrometry of organic compounds1 1紫外紫外可见吸收光谱可见吸收光谱 有机化合物的紫外可见吸收光谱是三种电子跃迁的结果:电

9、子、电子、n电子。分子轨道理论分子轨道理论:成键轨道反键轨道。当外层电子吸收紫外或可见辐射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁四种跃迁所需能量大小顺序大小顺序为:n n n s sp p *s s *RKE,Bnp p ECOHnp ps sH2022-4-292 2跃迁跃迁 所需能量最大;电子只有吸收远紫外光的能量才能发生跃迁; 饱和烷烃的分子吸收光谱出现在远紫外区; 吸收波长200 nm;例:甲烷的max为125nm , 乙烷max为135nm。 只能被真空紫外分光光度计检测到; 作为溶剂使用;s sp p *s s *RKE,Bnp p E2022-4-293 3n跃迁跃

10、迁 所需能量较大。 吸收波长为150250nm,大部分在远紫外区,近紫外区仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原子)均呈现n* 跃迁(生色团、助色团、红移、蓝移)。600215CH3NH2365258CH3I200173CH3CL150184CH3OH1480167H2Oemaxmax(nm)化合物2022-4-294 4 跃迁跃迁 所需能量较小,吸收波长处于远紫外区的近紫外端或近紫外区,max一般在104Lmol1cm1以上,属于强吸收。 (1 1) 不饱和烃不饱和烃* *跃迁跃迁 乙烯*跃迁的max为171nm,max为: 1104 Lmol-1cm1。 K带共

11、轭非封闭体系的p p* 跃迁 C=C 发色基团, 但 p p*200nm。ccHHHH取代基 -SR -NR2 -OR -Cl CH3 红移距离 45(nm) 40(nm) 30(nm) 5(nm) 5(nm) max=171nm 助色基团取代 n p*发生红移。2022-4-29 基基-是由非环或六环共轭二烯母体决定的基准值;是由非环或六环共轭二烯母体决定的基准值;无环、非稠环二烯母体: 基基=217 nm共轭烯烃(不多于四个双键)p p*跃迁吸收峰位置可由伍德伍德沃德沃德菲泽菲泽 规则估算。 max= 基基+ ni i (2)共轭烯烃中的)共轭烯烃中的 p p p p*具有共轭双键的化合物

12、,相间的p 键与p 键相互作用,生成大p 键。由于大p 键各能级的距离较近电子容易激发,所以吸收峰的波长就增加,生色作用加强发生深色移动。K带共轭非封闭体系的p p* 跃迁产生的吸收带。2022-4-29异环(稠环)二烯母体:异环(稠环)二烯母体: 基=214 nm同环(非稠环或稠环)二烯母体:同环(非稠环或稠环)二烯母体: 基=253 nmni I : 由双键上取代基种类和个数决定的校正项由双键上取代基种类和个数决定的校正项 (1)每增加一个共轭双键每增加一个共轭双键 +30 (2)环外双键环外双键 +5 (3)双键上取代基:双键上取代基:酰基(-OCOR) 0 卤素(-Cl,-Br) +5

13、烷基(-R) +5 烷氧基(-OR) +6 2022-4-29(3)羰基化合物共轭烯烃中的羰基化合物共轭烯烃中的 p p p p*OCRY Y=H,R n s* 150-160nm p p* 180-190nm n p* 275-295nmY= -NH2,-OH,-OR 等助色基团K 带红移,R 带兰移;R带 max =205nm ;e10-100K K R R ppp* n p* p* n 165nm p Ocp p* ppp*p*n cOcc不饱和醛酮K带红移:165250nmR 带红移:290310nm 2022-4-29(4)芳香烃及其杂环化合物芳香烃及其杂环化合物 苯:E1带1801

14、84nm; e=47000E2带200204 nm e=7000 苯环上三个共扼双键的 p p*跃迁特征吸收带;B带230-270 nm e=200 p p*与苯环振动引起;含取代基时, B带简化,红移。 max(nm)e max苯254200甲苯261300间二甲苯2633001,3,5-三甲苯266305六甲苯2723002022-4-29乙酰苯紫外光谱图乙酰苯紫外光谱图羰基双键与苯环共扼:K带强;苯的E2带与K带合并,红移;取代基使B带简化;氧上的孤对电子:R带,跃迁禁阻,弱;CC H3On p* ; R带p p* ; K带2022-4-29苯环上助色基团对吸收带的影响苯环上助色基团对吸

15、收带的影响2022-4-29苯环上发色基团对吸收带的影响苯环上发色基团对吸收带的影响2022-4-295. 5. 立体结构和互变结构的影响立体结构和互变结构的影响CCHHCCHH顺反异构顺反异构: 顺式:顺式:max=280nm; max=10500反式:反式:max=295.5 nm;max=29000互变异构互变异构: 酮式:酮式:max=204 nm 烯醇式:烯醇式:max=243 nm H3CCH2CCOEtOOH3CCHCCOEtOHO2022-4-296. 6. 溶剂的影响溶剂的影响COCO非极性 极性 n p p* * p p* * n n p n pn p*跃迁:兰移;兰移;

16、;ee p p*跃迁:红移; ;ee max(正己烷)max(氯仿)max(甲醇)max(水)pp*230238237243np*329315309305异丙叉酮的溶剂效应2022-4-29溶剂的影响溶剂的影响1:乙醚2:水12250300苯酰丙酮 非极性 极性n p*跃迁:兰移;兰移; ;ee p p*跃迁:红移; ;ee极性溶剂使精细结构消失;2022-4-29选择溶剂的原则选择溶剂的原则在选择紫外吸收光谱分析的溶剂时,应注意如下几点: (1)在溶解度允许的范围内,应尽量选用极性较小的 溶剂; (2)对试样有良好的溶解能力和选择性,并且形成的溶液具有良好的化学和光化学稳定性; (3)在测定

17、光谱区域,溶剂本身无明显吸收。2022-4-297.7.生色团与助色团生色团与助色团生色团:生色团: 最有用的紫外可见光谱是由和n跃迁产生的。这两种跃迁均要求有机物分子中含有不饱和基团。这类含有键的不饱和基团称为生色团。简单的生色团由双键或叁键体系组成,如乙烯基、羰基、亚硝基、偶氮基NN、乙炔基、腈基CN等。助色团:助色团: 有一些含有n电子的基团(如OH、OR、NH、NHR、X等),它们本身没有生色功能(不能吸收200nm的光),但当它们与生色团相连时,就会发生n共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。2022-4-29红移与蓝移红移与

18、蓝移 有机化合物的吸收谱带常常因引入取代基或改变溶剂使最大吸收波长max和吸收强度发生变化: max向长波方向移动称为红移红移,向短波方向移动称为蓝移蓝移 (或紫移)。吸收强度即摩尔吸光系数增大或减小的现象分别称为增色效应或减色效应,如图所示。2022-4-29第十一章 紫外吸收光谱分析法一、基本组成一、基本组成general process二、分光光度计的类型二、分光光度计的类型types of spectrometer 第二节 紫外可见分光光度计ultraviolet spectrometryultraviolet spectrometer2022-4-29仪器 紫外-可见分光光度计202

19、2-4-29一、基本组成 general process光源单色器样品室检测器显示1. 1. 光源光源 在整个紫外光区或可见光谱区可以发射连续光谱,具有足够的辐射强度、较好的稳定性、较长的使用寿命。 可见光区:钨灯作为光源,其辐射波长范围在3202500 nm。 紫外区:氢、氘灯。发射185400 nm的连续光谱。2022-4-29 2.单色器 将光源发射的复合光分解成单色光并可从中选出一任波长单色光的光学系统。 入射狭缝:入射狭缝:光源的光由此进入单色器; 准光装置:准光装置:透镜或返射镜使入射光成为平行光束; 色散元件:色散元件:将复合光分解成单色光;棱镜或光栅;棱镜或光栅; 聚焦装置:聚

20、焦装置:透镜或凹面反射镜,将分光后所得单色光聚焦至出射狭缝; 出射狭缝出射狭缝。2022-4-293.样品室 样品室放置各种类型的吸收池(比色皿)和相应的池架附件。吸收池主要有石英池和玻璃池两种。在紫外区须采用石英池紫外区须采用石英池,可见区一可见区一般用玻璃池。般用玻璃池。4.4.检测器检测器 利用光电效应将透过吸收池的光信号变成可测的电信号,常用的有光电池、光电管或光电倍增管。5. 5. 结果显示记录系统结果显示记录系统 检流计、数字显示、微机进行仪器自动控制和结果处理2022-4-29二、分光光度计的类型 types of spectrometer 1.1.单光束单光束 简单,价廉,适于

21、在给定波长处测量吸光度或透光度,一般不能作全波段光谱扫描,要求光源和检测器具有很高的稳定性。2.2.双光束双光束 自动记录,快速全波段扫描。可消除光源不稳定、检测器灵敏度变化等因素的影响,特别适合于结构分析。仪器复杂,价格较高。2022-4-293.3.双波长双波长 将不同波长的两束单色光(1、2) 快束交替通过同一吸收池而后到达检测器。产生交流信号。无需参比池。= 12nm。两波长同时扫描即可获得导数光谱。2022-4-29光路图光路图2022-4-29第十一章第十一章 紫外吸收光谱紫外吸收光谱分析法分析法一、一、 定性、定量分析定性、定量分析qualitative and quanti-t

22、ative analysis二、二、 有机物结构确定有机物结构确定structure determination of organic compounds第三节第三节 紫外吸收紫外吸收光谱的应用光谱的应用ultraviolet spectro-photometry, UVapplications of UV2022-4-29一、定性、定量分析一、定性、定量分析 qualitative and quantitative analysis1. 1. 定性分析定性分析 emax:化合物特性参数,可作为定性依据; 有机化合物紫外吸收光谱:反映结构中生色团和助色团的特性,不完全反映分子特性; 计算吸收峰

23、波长,确定共扼体系等 甲苯与乙苯:谱图基本相同; 结构确定的辅助工具; emax , max都相同,可能是一个化合物; 标准谱图库:46000种化合物紫外光谱的标准谱图 The sadtler standard spectra ,Ultraviolet 2022-4-292. 2. 定量分析定量分析 依据:朗伯依据:朗伯-比耳定律比耳定律 吸光度: A= e e b c 透光度:-lgT = e e b c 灵敏度高: emax:104105 L mol-1 cm -1;(比红外大) 测量误差与吸光度读数有关: A=0.434,读数相对误差最小;3. 3. 纯度检测纯度检测(1)杂质和化合物的

24、最大吸收波长不同(2)最大吸光系数不同2022-4-29二、有机化合物结构辅助解析二、有机化合物结构辅助解析 structure determination of organic compounds 1. 1. 可获得的结构信息可获得的结构信息(1)200-400nm 无吸收峰。饱和化合物,单烯。(2) 270-350 nm有吸收峰(=10-100)醛酮 n* 跃迁产生的R 带。(3) 250-300 nm 有中等强度的吸收峰(=200-2000),芳环的特征 吸收(具有精细解构的B带)。(4) 200-250 nm有强吸收峰(104),表明含有一个共轭体系(K)带。共轭二烯:K带(230 n

25、m);不饱和醛酮:K带230 nm ,R带310-330 nm260nm,300 nm,330 nm有强吸收峰,3,4,5个双键的共轭体系。 2022-4-292 2. .光谱解析注意事项光谱解析注意事项(1) 确认max,并算出,初步估计属于何种吸收带;(2) 观察主要吸收带的范围,判断属于何种共轭体系;(3) 乙酰化位移CH3CH3OHCH3OCOCH3B带带: 262 nm(302) 274 nm(2040) 261 nm(300)(4) pH值的影响 加NaOH红移酚类化合物,烯醇。 加HCl兰移苯胺类化合物。2022-4-293. 3. 分子不饱和度的计算分子不饱和度的计算 定义:定

26、义: 不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。 如:乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。 计算:计算: 若分子中仅含一,二,三,四价元素(H,O,N,C),则可按下式进行不饱和度的计算: = (2 + 2n4 + n3 n1 )/ 2 n4 , n3 , n1 分别为分子中四价,三价,一价元素数目。 作用:作用: 由分子的不饱和度可以推断分子中含有双键,三键,环,芳环的数目,验证谱图解析的正确性。例: C9H8O2 = (2 +29 8 )/ 2 = 62022-4-294. 4. 解析示例解析示例 有一化合物C10H16由红外光谱证明有双键和异丙基存在,其紫外光谱 m

27、ax=231 nm( 9000),此化合物加氢只能吸收2克分子H2,确定其结构。解:计算不饱和度 = 3;两个双键;共轭?加一分子氢 max=231 nm, 可能的结构 计算 max ABCD max:232 273 268 268 max =非稠环二烯(a,b)+2 烷基取代+环外双键 =217+25+5=232(231)2022-4-29吸收波长计算吸收波长计算2022-4-29立体结构和互变结构的确定立体结构和互变结构的确定CCHHCCHH顺式:max=280nm; max=10500反式:max=295.5 nm;max=29000共平面产生最大共轭效应, max大互变异构互变异构:

28、酮式:max=204 nm;无共轭 烯醇式:max=243 nm H3CCH2CCOEtOOH3CCHCCOEtOHO2022-4-29取代苯吸收取代苯吸收波长计算波长计算2022-4-29第十二章 红外吸收光谱分析法一、概述概述 introduction二、红外吸收光谱产生的二、红外吸收光谱产生的条件条件condition of Infrared absorption spectroscopy三、分子中基团的基本振三、分子中基团的基本振动形式动形式basic vibration of the group in molecular四、红外吸收峰强度四、红外吸收峰强度intensity of i

29、nfrared absorption bend 第一节 红外光谱分析基本原理infrared absorption spec-troscopy,IR principle of IR2022-4-29分子中基团的振动和转动能级跃迁产生:振分子中基团的振动和转动能级跃迁产生:振- -转光谱转光谱一、概述 introduction辐射分子振动能级跃迁红外光谱官能团分子结构近红外区中红外区远红外区2022-4-292022-4-29红外光谱图红外光谱图:纵坐标为吸收强度,横坐标为波长 ( m )和波数1/ 单位:cm-1可以用峰数,峰位,峰形,峰强来描述。应用:应用:有机化合物的结构解析。定性:定性:

30、基团的特征吸收频率;定量:定量:特征峰的强度;红外光谱与有机化合物结构2022-4-29二、红外吸收光谱产生的条件 condition of Infrared absorption spectroscopy 满足两个条件:满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。 对称分子对称分子:没有偶极矩,辐射不能引起共振,无红外活性。 如:N2、O2、Cl2 等。 非对称分子非对称分子:有偶极矩,红外活性。 偶极子在交变电场中的作用示意图(动画动画)2022-4-29分子振动方程式分子的振动能级(量子化):分子的振动能级(量子化): E振振=(

31、V+1/2)h V :化学键的化学键的 振动频率;振动频率; :振动量子数。振动量子数。双原子分子的简谐振动及其频率双原子分子的简谐振动及其频率化学键的振动类似于连接两个小球的弹簧化学键的振动类似于连接两个小球的弹簧2022-4-29 任意两个相邻的能级间的能量差为:任意两个相邻的能级间的能量差为: p p p p kkckhhE13072112 K化学键的力常数,与键能和键长有关,化学键的力常数,与键能和键长有关, 为双原子的为双原子的折合质量折合质量 =m1m2/(m1+m2) 发生振动能级跃迁需要能量的大小取决于键两端原子的发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力

32、常数,即取决于分子的结构特征。折合质量和键的力常数,即取决于分子的结构特征。2022-4-29表表 某些键的伸缩力常数(毫达因某些键的伸缩力常数(毫达因/埃)埃)键类型键类型 C C C =C C C 力常数力常数 15 17 9.5 9.9 4.5 5.6峰位峰位 4.5 m 6.0 m 7.0 m 化学键键强越强(即键的力常数化学键键强越强(即键的力常数K越大)原子折合质量越大)原子折合质量越小,化学键的振动频率越大,吸收峰将出现在高波数区。越小,化学键的振动频率越大,吸收峰将出现在高波数区。2022-4-29 例题例题: 由表中查知由表中查知C=C键的键的K=9.5 9.9 ,令其为令其

33、为9.6, 计算波数值。计算波数值。正己烯中C=C键伸缩振动频率实测值为1652 cm-1116502126913071307211cm/.pkkcv2022-4-29三、分子中基团的基本振动形式 basic vibration of the group in molecular1 1两类基本振动形式两类基本振动形式伸缩振动伸缩振动 亚甲基:亚甲基:变形振动变形振动 亚甲基亚甲基(动画动画)2022-4-29甲基的振动形式伸缩振动伸缩振动 甲基:甲基:变形振动变形振动 甲基甲基对称对称s s(CH(CH3 3)1380)1380-1-1 不不对称对称asas(CH(CH3 3)1460)146

34、0-1-1对称对称 不对称不对称s s(CH(CH3 3) ) asas(CH(CH3 3) )2870 2870 -1 -1 2960 2960-1-12022-4-29例水分子例水分子(非对称分子)(非对称分子)峰位、峰数与峰强峰位、峰数与峰强(1)峰位)峰位 化学键的力常数K越大,原子折合质量越小,键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低波数区(高波长区)。(2)峰数)峰数 峰数与分子自由度有关。无瞬间偶基距变化时,无红外吸收。(动画动画)2022-4-29峰位、峰数与峰强峰位、峰数与峰强例例2CO2分子分子(有一种振动无红外(有一种振动无红外活性)活性)(4

35、)由基态跃迁到第一激发态,产生一个强的吸收峰,基)由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰;频峰;(5)由基态直接跃迁到第二激发态,产生一个弱的吸收峰,)由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰;倍频峰;(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相)瞬间偶基距变化大,吸收峰强;键两端原子电负性相差越大(极性越大),吸收峰越强;差越大(极性越大),吸收峰越强;(动画动画)2022-4-29 (CH3)1460 cm-1,1375 cm-1。 (CH3)2930 cm-1,2850cm-1。C2H4O1730cm-11165cm-12720cm-1HHHHOCC20

36、22-4-29四、红外吸收峰强度 intensity of Infrared absorption bend 问题问题:C=O 强;强;C=C 弱;为什么?弱;为什么?吸收峰强度吸收峰强度跃迁几率跃迁几率偶极矩变化偶极矩变化吸收峰强度吸收峰强度 偶极矩的平方偶极矩的平方偶极矩变化偶极矩变化结构对称性;结构对称性;对称性差对称性差偶极矩变化大偶极矩变化大吸收峰强度大吸收峰强度大符号:符号:s(强强);m(中中);w(弱弱)红外吸收峰强度比紫外吸收峰小红外吸收峰强度比紫外吸收峰小23个数量级;个数量级;2022-4-29第十二章 红外吸收光谱分析法一一、红外光谱的基团频率、红外光谱的基团频率gro

37、up frequency in IR二、分子结构与吸收峰二、分子结构与吸收峰molecular structure and absorption peaks三、影响峰位移的因素三、影响峰位移的因素factors influenced peak shift 四、不饱和度四、不饱和度degree of unsaturation第二节 红外光谱与分子结构infrared absorption spec-troscopy,IRinfrared spectroscopy and molecular structure 2022-4-29一、红外吸收光谱的特征性 group frequency in IR

38、 与一定结构单元相联系的、在一定范围内出现的化学键与一定结构单元相联系的、在一定范围内出现的化学键振动频率振动频率基团特征频率(特征峰)基团特征频率(特征峰);例:例: 2800 3000 cm-1 CH3 特征峰特征峰; 1600 1850 cm-1 C=O 特征峰特征峰;基团所处化学环境不同,特征峰出现位置变化:基团所处化学环境不同,特征峰出现位置变化:CH2COCH2 1715 cm-1 酮酮CH2COO 1735 cm-1 酯酯CH2CONH 1680 cm-1 酰胺酰胺2022-4-29红外光谱信息区常见的有机化合物基团频率出现的范围:常见的有机化合物基团频率出现的范围:4000 6

39、70 cm-1依据基团的振动形式,分为四个区:依据基团的振动形式,分为四个区:(1)4000 2500 cm-1 XH伸缩振动区(伸缩振动区(X=O,N,C,S)(2)2500 1900 cm-1 三键,累积双键伸缩振动区三键,累积双键伸缩振动区(3)1900 1200 cm-1 双键伸缩振动区双键伸缩振动区(4)1200 670 cm-1 XY伸缩,伸缩, XH变形振动区变形振动区2022-4-29二、分子结构与吸收峰 molecular structure and absorption peaks1 XH伸缩振动区(伸缩振动区(4000 2500 cm-1 )(1)OH 3650 3200

40、 cm-1 确定确定 醇、酚、酸醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;当浓度较大时,发生缔合作用,峰形较宽。注意区分NH伸缩振动:3500 3100 cm-1 2022-4-29(3)不饱和碳原子上的)不饱和碳原子上的=CH( CH ) 苯环上的CH 3030 cm-1 =CH 3010 2260 cm-1 CH 3300 cm-1 (2)饱和碳原子上的CH3000 cm-1 以上 CH3 2960 cm-1 反对称伸缩振动 2870 cm-1 对称伸缩振动 CH2 2930 cm-1 反对称伸缩振动 2850 cm-1 对称伸缩振动 CH 2890 cm-1 弱

41、吸收3000 cm-1 以下2022-4-292 叁键(叁键(C C)伸缩振动区伸缩振动区(2500 1900 cm-1 )在该区域出现的峰较少;在该区域出现的峰较少;(1)RC CH (2100 2140 cm-1 ) RC CR (2190 2260 cm-1 ) R=R 时,无红外活性时,无红外活性(2)RC N (2100 2140 cm-1 ) 非共轭非共轭 2240 2260 cm-1 共轭共轭 2220 2230 cm-1 仅含仅含C、H、N时:峰较强、尖锐;时:峰较强、尖锐;有有O原子存在时;原子存在时;O越靠近越靠近C N,峰越弱;峰越弱;2022-4-293 双键伸缩振动区

42、(双键伸缩振动区( 1900 1200 cm-1 )(1) RC=CR 1620 1680 cm-1 强度弱,强度弱, R=R(对称对称)时,时,无红外活性。无红外活性。(2)单核芳烃)单核芳烃 的的C=C键伸缩振动(键伸缩振动(1626 1650 cm-1 )2022-4-29苯衍生物的苯衍生物的C=C 苯衍生物在苯衍生物在 1650 2000 cm-1 出现出现 C-H和和C=C键的面内键的面内变形振动的泛频吸收(强度弱),可用来判断取代基位置。变形振动的泛频吸收(强度弱),可用来判断取代基位置。200016002022-4-29(3)C=O (1850 1600 cm-1 ) 碳氧双键的

43、特征峰,强度大,峰尖锐。碳氧双键的特征峰,强度大,峰尖锐。饱和醛饱和醛(酮酮)1740-1720 cm-1 ;强、尖;不饱和向低波移动;强、尖;不饱和向低波移动;醛,酮的区分?醛,酮的区分?2022-4-29酸酐的酸酐的C=O 双吸收峰:18201750 cm-1 ,两个羰基振动偶合裂分; 线性酸酐:两吸收峰高度接近,高波数峰稍强; 环形结构:低波数峰强;羧酸的羧酸的C=O 18201750 cm-1 , 氢键,二分子缔合体;2022-4-294. XY,XH 变形振动区变形振动区 3000 cmcm-1-1) ) HCC HHCHC CH2H3080 cmcm-1-1 3030 cmcm-1

44、-1 3080 cmcm-1-1 3030 cmcm-1-1 3300 cmcm-1-1 (C-HC-H)3080-3030 cmcm-1-1 2900-2800 cmcm-1 -1 3000 cmcm-1 -1 2022-4-29b)C=C 伸缩振动伸缩振动(1680-1630 cmcm-1-1 ) )1660cmcm-1-1 分界线分界线C CR1HHR2C CR1R2R3HC CR1R2R3R4(C=CC=C)反式烯反式烯三取代烯三取代烯四取代烯四取代烯1680-1665 cmcm-1-1 弱,尖弱,尖C CR1HHR2C CR1HHHC CR1R2HH顺式烯顺式烯乙烯基烯乙烯基烯亚乙烯

45、基烯亚乙烯基烯1660-1630cmcm-1-1 中强,尖中强,尖2022-4-29 分界线1660cmcm-1-1 顺强,反弱 四取代(不与O,N等相连)无(C=CC=C)峰 端烯的强度强 共轭使(C=CC=C)下降20-30 cmcm-1-1 CCRHCCR2R1C CC C 2140-2100cmcm-1-1 (弱)(弱) 2260-2190 cmcm-1-1 (弱)(弱)总结总结2022-4-29c)C-H 变形振动变形振动(1000-700 cmcm-1-1 ) )面内变形 (=C-H)1400-1420 cmcm-1-1 (弱)弱)面外变形 (=C-H) 1000-700 cmcm

46、-1-1 (有价值)有价值)C CCCR1HHR2C CR1R2R3HC CR1R2R3R4RH (=C-H)970 cmcm-1-1(强)强) 790-840 cmcm-1-1 (820 cmcm-1-1) 610-700 cmcm-1-1(强)强) 2:1375-1225 cmcm-1-1(弱)弱) C CR1HHR2C CR1HHHC CR1R2HHCCR2R1 (=C-H)800-650 cmcm-1-1( 690 690 cm-cm-1 1)990 cmcm-1-1910910 cmcm-1-1 (强)强) 2:1850-1780 cmcm-1-1 890 cmcm-1-1(强)强)

47、 2:1800-1780 cmcm-1-1 2022-4-29谱图2022-4-292022-4-29对比烯烃顺反异构体烯烃顺反异构体2022-4-293.醇(醇(OH) OH,COa)-OH 伸缩振动伸缩振动(3600 cmcm-1-1) b)碳氧伸缩振动碳氧伸缩振动(1100 cmcm-1-1) )CCCCCOHCC游离醇,酚伯-OH 3640cmcm-1-1仲-OH 3630cmcm-1-1叔-OH 3620cmcm-1-1酚-OH 3610cmcm-1-1(OH) (C-OC-O) 1050 cmcm-1-11100 cmcm-1-11150 cmcm-1-11200 cmcm-1-1

48、支化:-15 cmcm-1-1不饱和:-30 cmcm-1-12022-4-29OH基团特性基团特性 双分子缔合(二聚体)3550-3450 cmcm-1-1多分子缔合(多聚体)3400-3200 cmcm-1-1分子内氢键:分子内氢键:分子间氢键:分子间氢键:多元醇(如1,2-二醇 ) 3600-3500 cmcm-1-1螯合键(和C=O,NO2等)3200-3500 cmcm-1-1多分子缔合(多聚体)3400-3200 cmcm-1-1 分子间氢键随浓度而变,分子间氢键随浓度而变,而分子内氢键不随浓度而变。而分子内氢键不随浓度而变。水(溶液)水(溶液)3710 cmcm-1-1水(固体)水(固体)33003300cm-1cm-1结晶水结晶水 3600-3450 3600-3450 cmcm-1-12022-4-293515cm-10 00101M M01M025M10M3640cm-13350cm-1 乙醇在四氯化碳中不同浓度的乙醇在四氯化碳中不同浓度的IR图图2950cm-12895 cm-12022-4-292022-4-292022-4-29脂族和环的C-O-C asas 11

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论