高考二轮复习物理全套教案(共94页)_第1页
高考二轮复习物理全套教案(共94页)_第2页
高考二轮复习物理全套教案(共94页)_第3页
高考二轮复习物理全套教案(共94页)_第4页
高考二轮复习物理全套教案(共94页)_第5页
已阅读5页,还剩90页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上专题一 力与物体的平衡 教案一 专题要点1. 重力产生:重力是由于地面上的物体受到地球的万有引力而产生的,但两者不等价,因为万有引力的一个分力要提供物体随地球自转所需的向心力,而另一个分力即重力,如右图所示。大小:随地理位置的变化而变化。在两极:G=F万在赤道:G= F万-F向一般情况下,在地表附近G=mg方向:竖直向下,并不指向地心。2. 弹力产生条件:接触挤压形变大小:弹簧弹力F=kx,其它的弹力利用牛顿定律和平衡条件求解。方向:压力和支持力的方向垂直于接触面指向被压或被支持的物体,若接触面是球面,则弹力的作用线一定过球心,绳的作用力一定沿绳,杆的作用力不一定沿杆

2、。提醒:绳只能产生拉力,杆既可以产生拉力,也可以产生支持力,在分析竖直平面内的圆周运动时应该注意两者的区别。3.摩擦力产生条件:接触且挤压接触面粗糙有相对运动或者相对运动趋势大小:滑动摩擦力,与接触面的面积无关,静摩擦力根据牛顿运动定律或平衡条件求解。方向:沿接触面的切线方向,并且与相对运动或相对运动趋势方向相反4.电场力电场力的方向:正电荷受电场力的方向与场强方向一致,负电荷受电场力的方向与场强方向相反。电场力的大小:,若为匀强电场,电场力则为恒力,若为非匀强电场,电场力将与位置有关。5.安培力方向:用左手定则判定,F一定垂直于I、B,但I、B不一定垂直,I、B有任一量反向,F 也反向。大小

3、: 此公式只适用于B和I互相垂直的情况,且L是导线的有效长度。当导线电流I与 B平行时,。6.洛伦兹力洛伦兹力的方向洛伦兹力的方向既与电荷的运动方向垂直,又与磁场方向垂直,所以洛伦兹力方向总是垂直于运动电荷的速度方向和磁场方向所确定的平面。洛伦兹力方向总垂直于电荷运动方向,当电荷运动方向改变时,洛伦兹力的方向也发生改变。由于洛伦兹力的方向始终与电荷运动方向垂直,所以洛伦兹力对电荷永不做功。洛伦兹力的大小:当,此时电荷受到的洛伦兹力最大当,即电荷的运动方向与磁场方向平行时,不受洛伦兹力的作用。当,说明磁场只对运动电荷产生力的作用。7.力的合成与分解由于力是矢量,因此可以用平行四边形定则进行合成与

4、分解,常用正交分解法和力的合成法来分析平衡问题8.共点力的平衡状态:静止或匀速运动F合=0.二 考纲要求考点要求考点解读滑动摩擦、静摩擦、动摩擦因数物体在共点力的作用下的平衡是静力学的基础。考题主要考察重力、弹力、摩擦力、电场力、磁场力作用下的共点力的平衡问题、共点力的合成与分解、物体(或带电体)平衡条件的应用;常用的方法有整体法与隔离法、正交分解法、解矢量三角形、相似三角形。题目一般是以一个选择题的形式考查受力分析或者把受力分析、力的合成与分解附在大题中出现。形变、弹性、胡克定律矢量和标量力的合成与分解共点力的平衡三 教法指引此专题复习时,可以先让学生完成相应的习题,在精心批阅之后以题目带动

5、知识点,进行适当提炼讲解 根据我对学生的了解,发现很多同学的力学基础不是很好,尤其在重力场、电场、磁场都出现之后受力变得复杂,有同学甚至不能区分F电、F安、F洛、把几个力混为一谈,处理力的性质时难度更大,所以在讲解时层次应放的低一点,还是要以夯实基础为主。四 知识网络五 典例精析题型1.(受力分析问题)如图所示,物体A 靠在倾斜的墙面上,在与墙面和B垂直的力F作用下,A、B保持静止,试分析A、B两个物体的受力个数。解析:B的受力简单一点,先取B为研究对象,若只受G与F作用,B物体不可能静止。因此 A对B有弹力与摩擦力,B物体共受四个力作用。再取A为研究对象,受重力、B对A的弹力、B对A沿A向下

6、的摩擦力、墙对A的弹力、墙对A沿墙向上的摩擦力,A物体共受五个力作用。此题也可以对AB整体分析推出墙对A对有弹力和向上的摩擦力(与分析B类似)。规律总结:1.在分析两个以上相互作用物体的受力分析时,要整体法和隔离法相互结合。2.确定摩擦力和弹力的方向时,通常根据物体所处的状态,采用“假设法”判断 3.当直接分析某一物体的受力不方面时,常通过转移研究对象,先分析与其相互作用的另一物体的受力,然后根据扭动第三定律分析该物体的受力,上例中就是先分析了B的受力,又分析A的受力。题型2.(重力、弹力和摩擦力作用下的物体平衡问题)如图所示我国国家大剧院外部呈椭球型。假设国家大剧院的屋顶为半球形,一警卫人员

7、为执行任务,必须冒险在半球形屋顶上向上缓慢爬行,他在向上爬的过程中 ( )A 屋顶对他的支持力变大B 屋顶对他的支持力变小C 屋顶对他的摩擦力变大D 屋顶对他的摩擦力变小解析:缓慢爬行可以看成任意位置都处于平衡状态。对图示位置进行受力分析建立平衡方程,向上爬时减小,所以f减小、N增大,AD对。若警卫人员执完特殊任务后从屋顶A点开始加速下滑,则摩擦力、支持力又如何?解析:这时,向下滑时增大,N减小、f减小,BD对。规律总结:1.本题考查了力学中的三种力及力的分解、物体平衡条件的应用。2.审题时要注意“缓慢”的含义,受力分析时应该特别注意摩擦力的方向沿着接触面的切线方向。3.要注意静摩擦力与滑动摩

8、擦力的求解方法不同,当加速下滑时受到的是滑动摩擦力应该根据公式求解。题型3.(连接体的平衡问题)如图所示,两光滑斜面的倾角分别为30和45,质量分别为2 m和m的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放,则在上述两种情形中正确的有( )(A)质量为2m的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用(B)质量为m的滑块均沿斜面向上运动(C)绳对质量为m滑块的拉力均大于该滑块对绳的拉力(D)系统在运动中机械能均守恒解析:A选项中下滑力不是物体受到的一个力,而是重力的分力B选项中原来,后来,两种情况下m

9、均沿斜面上滑C选项中作用力与反作用力应该大小相等D选项中因为斜面光滑,只有重力做功机械能守恒。此题选BD. 题型4.(弹簧连接体问题)如图,在一粗糙的水平面上有三个质量分别为m1、 m2 、m3的木块1、2和3,中间分别用一原长为L,劲度系数为k的轻弹簧连接起来,木块与地面间的动摩擦因数为。现用一水平力向右拉木块3,当木块一起匀速运动时,1和3两木块之间的距离是(不计木块宽度)( ) 解析:1和3之间的距离除了2L外还有两部分弹簧的伸长。对1:,对1和2:,即选项C正确。规律总结:1.弹簧连接的物体平衡和运动是物理中常见的情景,静止时的平衡态即合力为零时;物体在运动过程中,弹簧弹力的大小、方向

10、是可变的,所以在平衡态时常有最大速度(例如简谐振动)出现。2.分析弹簧问题时,特别注意找到原长位置、平衡位置和极端位置。3.在计算题中,弹簧的平衡态以一个知识点出现,列出平衡方程即可以求解。题型5.(电场和重力场内的物体平衡问题)如图,倾角为300的粗糙绝缘斜面固定在水平地面上,整个装置处在垂直于斜面向上的匀强电场中,一质量为m、电荷量为-q的小滑块恰能沿斜面匀速下滑,已知滑块与斜面之间的动摩擦因数为,求该匀强电场场强E的大小。.解析:受力分析如图 得:规律总结:1.电场力的方向与带电体电性和场强方向有关,匀强电场中电场力为恒力。2.正交分解法在处理物体受多个力作用的平衡问题时非常方便,常列两

11、个等式 题型6.(复合场内平衡问题)如图,坐标系xOy位于竖直平面内,在该区域有场强E=12N/C、方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、沿水平方向的且垂直于xOy平面指向纸里的匀强磁场。一个质量m=4×10-5kg,电荷量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点(g=10m/s2),求:P点到原点O的距离 带电微粒由原点O运动到P点的时间解析:匀速直线运动时:受力平衡得:v=10m/s,与x轴370斜向右上撤去磁场后受2个力结合速度方向可知做类平抛运动沿v方向:垂

12、直v方向: 得:OP=15m t=1.2s 规律总结:1.由于洛伦兹力的方向始终与B和V垂直,因此带电粒子在复合场内做直线运动时一定是匀速直线运动,即重力、电场力、洛伦兹力的合力为零,常作为综合性问题的隐含条件。2.此题也可以对撤去磁场后的速度进行分解,可以分解成沿电场力方向上的匀加速直线运动和沿重力方向上的竖直上抛运动。题型7.(重力场、磁场内通电导线的平衡问题)如图,在倾角为的斜面上,放置一段通电电流为I、长度为L、质量为m的导体棒a,棒与斜面间的动摩擦因数为,。欲使导体棒静止在斜面上,所加匀强磁场的磁感应强度的最小值是多少?如果导体棒a静止在斜面上且对斜面无压力,则所加匀强磁场的磁感应强

13、度大小和方向如何?解析:受力分析如图假设外力F与斜面成角,,,得:由三角函数极值可知: 无压力即此导线仅G和安培力,且平衡得:规律总结:通电导线所受的安培力与磁场方向、导体放置方向密切相关。而此三者方向不在同一平面内,在平面视图中很难准确画出来,因此选择好的观察方位,画出正确的平面视图,能够形象、直观地表达出三者的关系非常重要,是有效地解题的关键。题型8.(电磁感应中的平衡问题)如图甲,两根足够长的、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成,上端连接阻值为的电阻;质量为m=0.2kg、阻值金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触。整个

14、装置处于一匀强磁场中,该匀强磁场与导轨平面垂直,磁感应强度大小随时间变化的情况如图所示乙所示,为保持ab棒静止,在棒上施加了一平行于导轨平面且垂直于ab棒的外力F,已知当t=2s时,F恰好为零(g=10m/s2)。求当t=2s时,磁感应强度的大小当t=3s时,外力F的大小和方向当t=4s时,突然撤去外力F,当金属棒下滑速度达到稳定时,导体棒ab端的电压为多大 解析:当t=2s时,当t=3s时,B3=1.5T,平衡时:,得,得规律总结:1.通电导线(或导体棒)切割磁感线时的平衡问题,一般要综合应用受力分析、法拉第电磁感应定律,左、右手定则和电路的知识。在这类问题中,感应电流的产生和磁场对电流的作

15、用这两种现象总是相互联系的,而磁场力又将电和力这两方面问题联系起来。2.感应电流在磁场中受到的安培力对导线(或金属棒)的运动起阻碍作用,把机械能转化成电能。题型9.(摩擦力问题)在粗糙的水平面上放一物体A,A上再放一质量为m的物体B,AB间的动摩擦因数为,施加一水平力F与A,计算下列情况下A对B的摩擦力的大小当AB一起做匀速运动时当AB一起以加速度a向右做匀加速运动时当力F足够大而使AB发生相对运动时解析:因AB向右做匀速运动,B物体受到的合力为零,所以B物体受到的摩擦力为零。因AB无相对滑动,所以B物体受到的摩擦力为静摩擦力,此时不能用滑动摩擦力的公式来计算,用牛顿第二定律对B物体有因为AB

16、发生了相对滑动,所以B物体受到的摩擦力为滑动摩擦力,用滑动摩擦力的公式来计算, 规律总结:摩擦力大小的计算方法:在计算摩擦力的大小之前,必须首先分析物体的运动情况,判明是滑动摩擦力还是静摩擦力。若是前者用或牛顿运动定律,若是后者用平衡条件或牛顿第二定律求解。题型10.(力的合成与分解)如图所示,重物的质量为m,轻绳AO和BO的AB端是固定的,平衡时AO是水平的,BO与水平面的家教为。则AO的拉力F1和BO的拉力F2的大小是 ( )A. B. C. D. 解析:方法一:正交分解法将O点受到的力沿水平方向和竖直方向正交分解,由力的平衡条件得 解得BD选项正确。方法二:合成法以O点为研究对象,受力分

17、析由平衡条件可以知道,将合成为合力F,则F=F3,由直角三角形知识,得即,。BD选项正确。方法三:效果分解法将拉力F3按照作用效果分解为F31和F32,由直角三角形知识有:,所以, BD选项正确。规律总结:在对实际问题的求解中,可以用合成法,也可以用效果分解法,还可以用正交分解法。要善于根据题目要求,灵活选择解题方法。一般来说,在研究多个共点力作用的力学问题是,选用正交分解法比较方便。 题型11(相似三角形问题)如图2所示,已知带电小球A、B的电荷量分别为QA、QB,OA=OB,都用长L的绝缘丝线悬挂在绝缘墙角O点处。静止时A、B相距为d。为使平衡时AB间距离减为d/2,可采用以下哪些方法(

18、)A.将小球A、B的质量都增加到原来的2倍;B.将小球B的质量增加到原来的8倍;C.将小球A、B的电荷量都减小到原来的一半;D.将小球A、B的电荷量都减小到原来的一半,同时将小球B的质量增加到原来的2倍解析:对B球受力分析如图利用相似三角形可以知道,选BD。专题二 力与物体的直线运动六 专题要点第一部分:匀变速直线运动在力学中的应用1.物体或带电粒子做直线运动的条件是物体所受的合外力与速度方向平行。2.物体或带电粒子做匀变速直线运动的条件是物体所受的合外力为恒力且与速度方向平行。3.牛顿第二定律的内容是:物体运动时的加速度与物体所受的合外力成正比,与物体的质量成反比,加速度的方向与所受合外力的

19、方向相同,且二者具有瞬时对应关系,此定律可以用控制变量法进行实验验证。 4.速度时间关系图像的斜率表示物体运动的加速度,图像所包围的面积表示物体运动的位移。在分析物体的运动时常利用v-t图像帮助分析物体的运动情况。5.超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化。当a=g时物体完全失重。6.匀变速直线运动的基本规律为速度公式:位移公式: 速度与位移关系式:7.匀变速直线运动平均速度: 位移中点的瞬时速度第二部分:匀变速直线运动在电学中的应用1. 带电粒子在电场中直线运动的问题:实质是在电场中处理力学问题,其分析方法与力学中相同。首先进行受力分析,然

20、后看物体所受的合外力与速度方向是否一致,其运动类型有电场加速运动和交变的电场内往复运动 2. 带电粒子在磁场中直线运动问题:洛伦兹力的方向始终垂直于粒子的速度方向。3. 带电粒子在复合场中的运动情况一般较为复杂,但是它仍然是一个力学问题,同样遵循力和运动的各条基本规律。4. 若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,如果是匀强电场和匀强磁场,那么重力和电场力都是恒力,洛伦兹力与速度方向垂直,而其大小与速度大小密切相关。只有带电粒子的速度大小不变,才可能做直线运动,也即匀速直线运动。七 考纲要求考点要求考点解读参考系、质点本专题知识是整个高中物理的基础,高考对本部分考查的重点是匀变

21、速直线运动的公式及应用;v- t图像的理解及应用,其命题情景较为新颖,(如高速公路上的车距问题、追及相遇问题)竖直上抛与自由落体运动的规律及其应用;强调对牛顿第二定律分析、计算和应用考查,而牛顿第三定律贯穿于综合分析过程中。本专题内容单独考查注意是以选择题、填空题的形式出现,而单独命题的计算题较少,更多的是与牛顿运动定律、带电粒子的运动等知识结合起来进行考查。命题要关注多体运动通过时空的综合类问题、图像问题及直线运动与曲线运动相结合命题的多过程问题,正确理解力和运动的关系,并能熟练应用牛顿第二定律分析和计算斜面体、超重和失重等问题位移、速度和加速度匀变速直线运动及其公式、图像矢量和标量牛顿运动

22、定律及其应用超重和失重八 教法指引此专题复习时,可以先让学生完成相应的习题,在精心批阅之后以题目带动知识点,进行适当提炼讲解 这一专题有两大部分问题:运动学的相关知识力学相关知识,根据我对学生的了解,发现部分同学运动过程分析不到位,运动学公式应用不熟练,力学基础不是很好,要以夯实基础为主。九 知识网络十 典例精析题型1.(匀变速直线运动规律的应用)物体以速度v匀速通过直线上的A、B两点需要的时间为t。现在物体由A点静止出发,先做加速度大小为a1的匀加速直线运动到某一最大速度vm后立即做加速度大小为a2的匀减速直线运动至B点停下,历时仍为 t,则物体的 ( )A. 最大速度vm只能为2v,无论a

23、1、 a2为何值B. 最大速度vm可以为许多值,与a1、 a2的大小有关C. a1、 a2的值必须是一定的,且a1、 a2的值与最大速度vm有关D. a1、 a2必须满足解析:分析此题可根据描述的运动过程画出物体运动的速度图像,根据速度图像容易得出“最大速度vm只能为2v,无论a1、 a2为何值”的结论。也可利用解析法根据题述列出方程解答。设物体匀加速运动时间为t1,则匀减速运动时间为t- t1,根据题述有得vm=2v. ,所以正确选项为AD。规律总结:此题主要考查匀变速直线运动规律的灵活运用。此题也可以用速度图像形式给出解题信息,降低难度。题型2.(v-t图像的应用)某学习小组对一辆自制小遥

24、控汽车的性能进行研究。他们让这辆汽车在水平地面上由静止开始运动,并将小车运动的全过程记录下来,通过数据处理得到如图所示的v-t图,已知小车在0ts内做匀加速直线运动,ts10s内小车牵引力的功率保持不变,且7s10s为匀速直线运动;在10s末停止遥控,让小车自由滑行,小车质量m=1kg,整个过程小车受到的阻力Ff大小不变。求小车受到阻力Ff的大小。在ts10s内小车牵引力功率P。小车在加速运动过程中的总位移x解析:在10s末撤去牵引力后,小车只在阻力的作用下做匀减速运动,由图像可得减速时的加速度的值为(2分) (1分)小车在7s10s内做匀速直线运动,设牵引力为F,则(1分)由图像可知vm=6

25、m/s(1分)(1分)在ts10s内小车的功率保持不变,为12w。小车的加速运动过程可分为0ts和ts7s两段,由于ts是功率为12W,所以此次牵引力为 ,(2分)所以0ts内加速度大小为,(2分)(1分)在07s内由动能定理得:,(2分)得x=28.5m(1分)规律总结:1.v-t图像的斜率为物体运动的加速度,包围的面积是物体通过的位移。因此,本题第问中的x1也可以通过面积求解。2.机车匀加速启动过程还未达到额定功率。3.t时刻是匀加速运动的结束还是额定功率的开始,因此功率表达式结合牛顿第二定律和运动学公式求t是解题的关键。题型3.(运动学中的临界和极值问题)在水平长直的轨道上,有一长度为L

26、的平板车在外力控制下始终保持速度v0做匀速直线运动某时刻将一质量为m的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为(1)证明:若滑块最终停在小车上,滑块和车摩擦产生的内能与动摩擦因数无关,是一个定值 (2)已知滑块与车面间动摩擦因数=0.2,滑块质量m=1kg,车长L=2m,车速v0=4m/s,取g=10m/s2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F,要保证滑块不能从车的左端掉下,恒力F大小应该满足什么条件?(3)在(2)的情况下,力F取最小值,要保证滑块不从车上掉下,力F的作用时间应该在什么范围内? v0解析:(1)根据牛顿第二定律,滑块相对车滑动时的加速度

27、(1分)滑块相对车滑动的时间 (1分)滑块相对车滑动的距离 (1分)滑块与车摩擦产生的内能 (1分)由上述各式解得 (与动摩擦因数无关的定值)(1分)(2)设恒力F取最小值为F1,滑块加速度为a1,此时滑块恰好到达车的左端,则滑块运动到车左端的时间 由几何关系有 (1分)由牛顿定律有 (1分)由式代入数据解得 ,(2分)则恒力F大小应该满足条件是 (1分)(3)力F取最小值,当滑块运动到车左端后,为使滑块恰不从右端滑出,相对车先做匀加速运动(设运动加速度为a2,时间为t2),再做匀减速运动(设运动加速度大小为a3)到达车右端时,与车达共同速度则有(1分)(1分)(1分)由式代入数据解得(1分)

28、则力F的作用时间t应满足 ,即(2分)审题指导:1.临界和极值问题的处理关键就是找到临界状态,进一步确定临界条件2.运动学中的临界问题还应注意找到时间和位移关系,以便列出方程。q题型4.(动力学两类基本问题)如图所示,质量为M的汽车通过质量不计的绳索拖着质量为m的车厢(可作为质点)在水平地面上由静止开始做直线运动已知汽车和车厢与水平地面间的动摩擦因数均为m ,汽车和车厢之间的绳索与水平地面间的夹角为q ,汽车的额定功率为P,重力加速度为g,不计空气阻力为使汽车能尽快地加速到最大速度又能使汽车和车厢始终保持相对静止,问:(1)汽车所能达到的最大速度为多少?(2)汽车能达到的最大加速度为多少?(3

29、)汽车以最大加速度行驶的时间为多少? 解析:(1)当汽车达到最大速度时汽车的功率为P且牵引力与汽车和车厢所受摩擦力大小相等,即 (1分)由于在整个运动过程中汽车和车厢保持相对静止,所以汽车和车厢所受的摩擦力为(1分)又 (1分)由上述三式可知汽车的最大速度为: (2分)() 要保持汽车和车厢相对静止,就应使车厢在整个运动过程中不脱离地面考虑临界情况为车厢刚好未脱离地面,此时车厢受到的力为车厢重力和绳索对车厢的拉力T,设此时车厢的最大加速度为a,则有: 水平方向 (1分) 竖直方向 (1分) 由上两式得: (1分)(3)因为此时汽车作匀加速运动,所以(1分)(用隔离法同样可得) (1分)即 (1

30、分)因为汽车达到匀加速最大速度时汽车的功率达到额定功率,根据 a(1分)由题意知,汽车一开始就做加速度最大的匀加速运动,匀加速的最大速度为 (1分)所以以最大加速度匀加速的时间为: (1分)题型5.(电场内的直线运动问题)如图所示,倾角为的斜面AB是粗糙且绝缘的,AB长为L,C为AB的中点,在A、C之间加一方向垂直斜面向上的匀强电场,与斜面垂直的虚线CD为电场的边界。现有一质量为m、电荷量为q的带正电的小物块(可视为质点),从B点开始在B、C间以速度0沿斜面向下做匀速运动,经过C后沿斜面匀加速下滑,到达斜面底端A时的速度大小为。试求:(1)小物块与斜面间的动摩擦因数;(2)匀强电场场强E的大小

31、。解析:(1)小物块在BC上匀速运动,由受力平衡得 (1分) (1分) 而    (1分)  由解得 (1分)(2)小物块在CA上做匀加速直线运动,受力情况如图所示。则  (1分) (1分)根据牛顿第二定律得  (1分) (1分)由解得 (2分) 规律总结:1.在电场中的带电体,不管其运动与否,均始终受到电场力的作用,其大小为F=Eq,与电荷运动的速度无关,方向与电场的方向相同或相反,它既可以改变速度的方向,也可以改变速度的大小,做功与运动路径无关。2.电场内的变速运动问题实质上是力学问题,受力分析是关键。题型6.(混合场内直线运动问

32、题的分析)带负电的小物体A放在倾角为的足够长的绝缘斜面上,整个斜面处于范围足够大、方向水平向右的匀强电场中,如图物体A的质量为m,电荷量为-q,与斜面间的动摩擦因数为,它在电场中受到的电场力大小等于重力的一半。物体 A在斜面上由静止开始下滑,经过时间t后突然在斜面区域加上范围足够大的匀强磁场,磁场方向垂直于纸面,磁感应强度大小为B,此后物体A沿斜面继续下滑距离L后离开斜面。求:物体A在斜面上的运动情况如何?说明理由。 物体A在斜面上运动的过程中有多少能量转化成内能?解析:物体A在斜面上受重力、电场力、支持力、滑动摩擦力的作用,如图所示。由此可知:i. 小物体A在恒力作用下,先在斜面上做初速度为

33、零的匀加速直线运动;加上匀强磁场后,还受到方向垂直于斜面向上的洛伦兹力的作用,方可使A离开斜面,故磁感应强度应该垂直纸面向里,随着速度的增加,洛伦兹力增大,斜面的支持力减小,滑动摩擦力减小,物体继续做加速度增大的加速直线运动直到斜面的支持力为零,此后物体A将离开斜面。加磁场之前,物体A做匀加速直线运动,由牛顿第二定律,有 ,由以上三式得:A在斜面上运动的距离为加上磁场后,受洛伦兹力的作用,随速度的增大支持力在减小,直到支持力为零时物体A离开斜面。有解得:物体A在斜面上运动的过程中,重力和电场力做正功,滑动摩擦力做负功,洛伦兹力不做功,由动能定理得: 物体A克服摩擦力做功,机械能转化成内能规律总

34、结:该题涉及到重力、电场力、洛伦兹力做功特点和动能定理等知识点,考查学生对运动和力的关系的理解和掌握情况,同时考查了学生对接触物体的分离条件的灵活运用,解决此题的关键是抓住重力、电场力做功与路径无关、洛伦兹力永不做功的特点,另要注意加上磁场后,受洛伦兹力的影响,随速度的增大支持力在减小,直到支持力为零时物体A离开斜面。W专题三 力与物体的曲线运动 教案十一 专题要点第一部分:平抛运动和圆周运动3. 物体做曲线运动的条件当物体所受的合外力方向与速度方向不在同一直线上时,物体做曲线运动。合运动与分运动具有等时性、独立性和等效性。2.物体(或带电粒子)做平抛运动或类平抛运动的条件是:有初速度初速度方

35、向与加速度方向垂直。3.物体做匀速圆周运动的条件是:合外力方向始终与物体的运动方向垂直;绳子固定物体通过最高点的条件是:;杆固定通过最高点的条件是:。物体做匀速圆周运动的向心力即物体受到的合外力。4.描述圆周运动的几个物理量为:角速度,线速度v,向心加速度a,周期T,频率f。其关系为:5.平抛(类平抛)运动是匀变速曲线运动,物体所受的合外力为恒力,而圆周运动是变速运动,物体所受的合外力为变力,最起码合外力的方向时刻在发生变化。第二部分:万有引力定律及应用1.在处理天体的运动问题时,通常把天体的运动看成是匀速圆周运动,其所需要的向心力由万有引力提供,其基本关系式为:,在天体表面,忽略星球自转的情

36、况下:2.卫星的绕行速度、角速度、周期、频率和半径r的关系:由,得,所以r越大,v越小。由,得,所以r越大,越小 由,得,所以r越大,T越大。由,得,所以r越大,a向(g/)越小。3. 三种宇宙速度:第一、第二、第三宇宙速度 第一宇宙速度(环绕速度):是卫星环绕地球表面运行的速度,也是绕地球做匀速圆周运动的最大速度,也是发射卫星的最小速度V1=7.9Km/s。第二宇宙速度(脱离速度):使物体挣脱地球引力束缚的最小发射速度,V2=11.2Km/s。第三宇宙速度(逃逸速度):使物体挣脱太阳引力束缚的最小发射速度,V3=16.7 Km/s。4.天体质量M、密度的估算(1)从环绕天体出发:通过观测环绕

37、天体运动的周期T和轨道半径r;就可以求出中心天体的质量M (2)从中心天体本身出发:只要知道中心天体的表面重力加速度g和半径R就可以求出中心天体的质量M。十二 考纲要求考点要求考点解读运动的合成与分解本专题的重点是运动的合成与分解、平抛运动和圆周运动。特点是综合性请、覆盖面广、纵横联系点多。可以有抛体运动与圆周运动或直线运动间多样组合,还可以与电场、磁场知识综合,命题的思路依然是以运动为线索进而从力、能量角度进行考查。应用万有引力定律解决天体运动、人造地球卫星运动、变轨问题。应该从以下几个方面进行重视:直线运动、平抛运动和圆周运动的组合性问题,主要考查运动的合成与分解、动力学特征和功能关系应用

38、分解与合成的思想解决带电粒子在各种场中的类平抛运动问题;应用圆周运动的知识解决混合场内的圆周运动问题以我国飞速发展的航天事业为背景,凸显最新科技动态,应用万有引力定律解决卫星发射和回收变转过程中各物理量的比较和功能转化。抛体运动匀速圆周运动、角速度、线速度、向心加速度匀速圆周运动的向心力离心现象万有引力定律及应用环绕速度第二宇宙速度和第三宇宙速度十三 教法指引此专题复习时,可以先让学生完成相应的习题,在精心批阅之后以题目带动知识点,进行适当提炼讲解。根据我对学生的了解,发现很多同学对这个专题中的: 几个物理模型构建不理想,如平抛运动、类平抛运动、匀速圆周运动、天体运动等同于匀速圆周运动 模型建

39、立好了,但是处理问题时方法选择不恰当所以在讲解时层次应放的低一点,着重掌握好各种物理模型,理解处理各种模型的方法,坚持夯实基础为主的主线。十四 知识网络 十五 典例精析题型1.(运动的合成与分解问题)若河水的流速大小与水到河岸的距离有关,河中心水的流速最大,河岸边缘处水的流速最小 现假设河的宽度为120m,河中心水的流速大小为4m/s,船在静水中的速度大小为3m/s,要使般以最短时间渡河,则( )A船渡河的最短时间是24sB在行驶过程中,船头始终与河岸垂直C船在河水中航行的轨迹是一条直线D般在河水中的最大速度为5m/s解析:根据分运动具有独立性和等时性可知,当船头与河岸垂直过河时,时间t最短,

40、t=120/3=40s,A错,B对;船速是恒定的,但是水流速度与水到河岸的距离有关,合速度的大小和方向都在不断变化,轨迹为曲线,C错;船在河水中的速度是指合运动的速度 最大,D正确。规律总结:1.合运动与分运动具有等时性,分运动具有独立性,这一原理经常应用解决小船过河即平抛运动问题。2.运动的合成与分解的依据仍然是平行四边形定则。3.区分分运动和合运动的基本方法是:合运动是物体的实际运动轨迹。PABC题型2. (平抛(或类平抛)运动问题)如图所示,AB为竖直墙壁,A点和P点在同一水平面上。空间存在着竖直方向的匀强电场。将一带电小球从P点以速度向A抛出,结果打在墙上的C处。若撤去电场,将小球从P

41、点以初速向A抛出,也正好打在墙上的C点。求:(1)第一次抛出后小球所受电场力和重力之比(2)小球两次到达C点时速度之比解析:(1)设AC=h、电场力为FQ,根据牛顿第二定律得:FQ+mg=ma第一次抛出时,h= (1分 )第二次抛出时,h= (1分 )由、两式得a=4g (1分 )所以,FQ:G=3:1 (1分 )(2)第一次抛出打在C点的竖直分速度y1=a() (1分 )第二次抛出打在C点的竖直分速度y2=g() (1分 )第一次抛出打在C点的速度1= (1分 ) 第二次抛出打在C点的速度2= (1分 )所以,1:2=2:1 (1分 )规律总结:平抛(或类平抛)运动处理的基本方法就是把运动分

42、解为水平方向的匀速运动和竖直方向的匀加速运动。通过研究分运动达到研究合运动的目的。题型3.(竖直平面内的圆周运动问题)如图15所示,质量为 m、电量为+q的带电小球固定于一不可伸长的绝缘细线一端,绳的另一端固定于O点,绳长为,O点有一电荷量为+Q(Qq)的点电荷P,现加一个水平和右的匀强电场,小球静止于与竖直方向成 =300角的A点。求:(1)小球静止在A点处绳子受到的拉力;(2) 外加电场大小;(3)将小球拉起至与O点等高的B点后无初速释放,则小球经过最低点C时,绳受到的拉力。解析:(1)带电粒子A处于平衡,其受力如图,其中F为两点电荷间的库仑力,T为绳子拉力,E0为外加电场,则Tcos-m

43、g-Fcoss=0 (2分)Fsin+qE0-Tsin=0 (2分) (2分)联立式解得:有 (2分) (2分) (2)小球从B运动到C的过程中,q与Q间的库仑力不做功,由动能定理得 (2分)在C点时: (2分)联立、解得: (2分)审题指导:1.要注意对小球受力分析,不要漏掉库仑力。4. 在处理竖直平面内的圆周运动问题时,一般要用动能定理建立最高点、最低点的速度关系。5. 要注意库仑力始终与运动方向垂直,不做功。题型4.(万有引力定律及应用)图示是我国的“探月工程”向月球发射一颗绕月探测卫星“嫦娥一号”过程简图“嫦娥一号”进入月球轨道后,在距离月球表面高为h的轨道上绕月球做匀速圆周运动(1)

44、若已知月球半径为R月,月球表面的重力加速度为g月,则“嫦娥一号”环绕月球运行的周期为多少?(2)若已知R月=R地,g月=g地,则近月卫星的运行速度约为近地卫星运行速度的多少倍?中段轨道修正误差发射进入奔月轨道进入月球轨道制动开始解析:(1)设“嫦娥一号”环绕月球运行的周期是T,根据牛顿第二定律得G= mg月 (2分)G= m(R月+h)(2分)解得T=(2分)(2)对于靠近天体表面的行星或卫星有mg=,v=(2分)由v=知,=(1分)将R月=R地,g月=g地代入计算,可知(0.2)(2分)即近月卫星的运行速度约为近地卫星运行速度的(0.2)倍规律总结:在利用万有引力定律解决天体运动的有关问题是

45、,通常把天体运动看成匀速圆周运动,其需要的向心力就是天体之间相互作用的万有引力提供。即 BAP题型5.(卫星与航天问题)如图所示,A为静止于地球赤道上的物体,B为绕地球做椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点已知A、B、C绕地心运动的周期相同相对于地心,下列说法中不正确的是A物体A和卫星C具有相同大小的加速度CB卫星C的运行速度大于物体A的速度 C可能出现:在每天的某一时刻卫星B在A的正上方D卫星B在P点的运行加速度大小与卫星C的运行加速度大小相等解析:A、C两者周期相同,转动角速度 相同,由可知A错;由可知,B正确;因为物体A随地球自转,而B物体转动周期与

46、A相同,当B物体经过地心与A连线与椭圆轨道的交点是,就会看到B在A的正上方,C对;由可知,D 正确。题型6.(天体与航天器的能量问题)重力势能EPmgh实际上是万有引力势能在地面附近的近似表达式,其更精确的表达式为EPGMm/r,式中G为万有引力恒量,M为地球质量,m为物体质量,r为物体到地心的距离,并以无限远处引力势能为零。现有一质量为m的地球卫星,在离地面高度为H处绕地球做匀速圆周运动。已知地球半径为R,地球表面的重力加速度为g,地球质量未知,试求:(1)卫星做匀速圆周运动的线速度;(2)卫星的引力势能;(3)卫星的机械能;(4)若要使卫星能依靠惯性飞离地球(飞到引力势能为零的地方),则卫

47、星至少要具有多大的初速度?解析:(1)由牛顿运动定律: (2分) 得:(1分)由引力势能的表达式:(2分)卫星的机械能应该是卫星的动能和势能之和,即得(3分)(1分)由机械能守恒定律,对地球与卫星组成的系统,在地球表面的机械能与飞到无限远处的机械能相等。设初速度至少应为v,(2分)解得:(1分)规律总结:在卫星和地球组成的系统内,机械能是守恒的,卫星的动能可通过匀速圆周运动的线速度来求,引力势能在选择了无穷远处为零势能点后,可以用 来求,机械能为两者之和。专题四 功和能 教案十六 专题要点1.做功的两个重要因素:有力作用在物体上且使物体在力的方向上发生了位移。功的求解可利用求,但F为恒力;也可以利用F-l图像来求;变力的功一般应用动能定理间接求解。2.功率是指单位时间内的功,求解公式有,当时,即F与v方向相同时,P=FV。3.常见的几种力做功的特点重力、弹簧弹力,电场力、分子力做功与路径无关摩擦力做功的特点单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功。相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能的转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论