小学奥数乘法原理之染色法精选例题练习习题(含知识点拨)_第1页
小学奥数乘法原理之染色法精选例题练习习题(含知识点拨)_第2页
小学奥数乘法原理之染色法精选例题练习习题(含知识点拨)_第3页
小学奥数乘法原理之染色法精选例题练习习题(含知识点拨)_第4页
小学奥数乘法原理之染色法精选例题练习习题(含知识点拨)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、7-2-3乘法原理之染色问题目M点 教学目标1 .使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2 .使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3 .培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.目B网叵知识要点一、乘法原理概念引入老师周六要去给同学们上课, 首先得从家出发到长宁上 8点的课,然后得赶到黄埔去上下午 1点半的课.如 果说申老师的家到长宁有 5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到 黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老

2、师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定 要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显 而易见一共是10条路线.但是要是老师从家到长宁有 25种可选择的交通工具, 并且从长宁到黄埔也有 30种 可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原 理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从

3、长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,第n步有N种不同的方法.那么完成这件事情一共有A>BX测种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要 2个步骤,第1步是从家到长宁,一共 5种 选择;第2步从长宁到黄埔,一共 2种选择;那么老师从家到黄埔一共有5X2个可选择的路线了,即 10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题比如说老师举的这个例子就是个路线种类问题;2、字的染色问题 一一比如说要3个字,然后有5种颜色可以给每个字然后,

4、问3个字有多少种染色方法;3、地图的染色问题 一一同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张 包括几个部分的地图有几种染色的方法;4、排队问题一一比如说6个同学,排成一个队伍,有多少种排法;5、数码问题一一就是对一些数字的排列, 比如说给你几个数字, 然后排个几为数的偶数, 有多少种排法. 自隹例题精讲【题型】解答2种颜色可选,此时 D也有2种颜色可选.根据乘法原理,不同的涂例1 地图上有A, B, C, D四个国家(如下图卜现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜 色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题【解析】A有

5、3种颜色可选;当B, C取相同的颜色时,有法有3M2M2=12种; 当B, C取不同的颜色时,B有2种颜色可选,C仅剩1种颜色可选,此时D也只有1种颜色可选(与A相同).根据乘法原理,不同的涂法有3M2父1父1=6种.综上,根据加法原理,共有 12+6 =18种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都 必须要用,问有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】第一步,首先对 A进行染色一共有4种方法,然后对B、C进行染色,如果B、C取相同的颜色,有 三种方式,D剩下3种方式,如果B、C

6、取不同颜色,有3父2=6种方法,D剩下2种方法,对该图 的染色方法一共有 4 乂 (3x3 +3x2x2)=84种方法.【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例2】 在右图的每个区域内涂上 A、B、C、D四种颜色之一,使得每个圆里面恰有四种颜色,则一共 有 种不同的染色方法.【考点】乘法原理之染色问题4个区域一共有4 M 3M 2 =24种染色方【解析】因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与 2、3、4三个区域的颜色相同

7、,所以只能与1号区域的颜色相同,同理 5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当 1、2、3、4四个区域的颜色染定后,其他区 域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24例3如图,地图上有 A, B, C, D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同, 有多少种不同染色方法 ?ABCD【考点】【解析】【答案】【巩固】乘法原理之染色问题【难度】3星【题型】解答为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给 A染色,有5种颜色可选.第二步:给B染色,由于B不能与A同色,所以B有4种颜色可选

8、.第三步:给C染色,由于C不能与A、B同色,所以C有3种颜色可选.第四步:给D染色,由于D不能与B、C同色,但可以与 A同色,所以D有3种颜色可选. 根据分步计数的乘法原理,用 5种颜色给地图染色共有 5父4父3父3 = 180种不同的染色方法. 180如图,一张地图上有五个国家 A , B, C, D, E ,现在要求用四种不同的颜色区分不同国家, 要求相邻的国家不能使用同一种颜色,不同的国家可以使用同 一种颜色,那么这幅地图有多少着色【考点】【解析】【答案】【例4乘法原理之染色问题【难度】3星【题型】解答第一步,给A国上色,可以任选颜色,有四种选择;第二步,给B国上色,B国不能使用A国的颜

9、色,有三种选择;第三步,给C国上色,C国与B , A两国相邻,所以不能使用第四步,给D国上色,D国与B, 第五步,给E国上色,E国与C ,96A , B国的颜色,只有两种选择;C两国相邻,因此也只有两种选择;D两国相邻,有两种选择.共有4M 3M2M2M2 = 96种着色方法.如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块, 等的两块、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相一,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】【解析】【答案】【巩固】乘法

10、原理之染色问题对这张纸的操作一共进行了 我们对这张纸,进行染色就 有:4、3、2、2、21536【题型】解答8次,每次操作都增加了一个区块,所以8次操作后一共有 9个区块,需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法,所以一共有:4M3M2M2M2M2M2M2M2 =1536种.用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?方法?ABCDE【考点】乘法原理之染色问题【难度】2星【题型】解答【解析】涂三块毫无疑问是分成三步.第一步,涂 A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了

11、一种颜色后,B只有两种颜色可选择了;第三步,涂 C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了.然后再根据乘法原理.3m2m1=6【答案】6例5如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染 的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】 这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4父3父2父2父2=96种方法.【讨论】如果染色步骤为

12、 C - A- B - D - E ,那么应该该如何解答?答案:也是4M3M2父2父2=96种方法.如果染色步骤为 C-A-D-B-E那么应该如何解答?答案: 染色的前两步一共有 4q种方法,但染第 三步时需要分类讨论,如果 D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染 不同的颜色,那么 D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有4 M3 M(1 M2 M2 +2 M1 M2) =96种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授 ),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所 染的区块相邻.【答案

13、】96某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色, 要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?乘法原理之染色问题为了便于分析,把地图上的【难度】4星【题型】解答ABCDEFG7个县分别编号为 A、B、C、D、E、F、G (如左下图).为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图.那么,为了完成地图染色这 件工作需要多少步呢?由于有7个区域,我们不妨按 A、B、C、D、E、F、G的顺序,用红、黑、绿、蓝、紫五种颜色依次分第1步:第2步:第3步:第4步:第5步:7步来完成染色任务.先染区域A,有5种颜色可供选择;再染区域B,

14、由于B不能与A同色,所以区域 B的染色方式有4种; 染区域C,由于C不能与B、A同色,所以区域 C的染色方式有3种; 染区域D,由于D不能与C、A同色,所以区域 D的染色方式有3种; 染区域E,由于E不能与D、A同色,所以区域 E的染色方式有3种;第6步:染区域F ,由于F不能与E、A同色,所以区域F的染色方式有3种;第7步:染区域G,由于G不能与C、D同色,所以区域 G的染色方式有3种.根据分步计数的乘法原理,共有5M4M3M3M3x3x3=4860种不同的染色方法.【答案】4860例6用3种颜色把一个3M3的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法.

15、【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】根据题意可知,染完后这个 3 M 3的方格表每一行和每一列都恰有3个颜色.用3种颜色染第一行,有 P33=6种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法.所以,根据乘法原理,共有 3M2 =6种不同的染法.【答案】6 【例7】 如右图,有 A、B、C、D、E五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?【考点】乘法原理之染色问题【难度】3星【题型】解答

16、B染色,有4种方式;第三步给 C染色,有【考点】乘法原理之染色问题【题型】解答【解析】先采用分步:第一步给 A染色,有5种方法;第二步给3种方式;第四步给 D染色,有3种方式;第五步,给 E染色,由于E不能与A、B、D同色,但可 以和C同色.此时就出现了问题:当 D与B同色时,E有3种颜色可染;而当 D与B异色时,E有2种颜色可染.所以必须从第四步就开始分类:第一类,D与B同色.E有3种颜色可染,共有5X4X3X3=180 (种)染色方式;第二类,D与B异色.D有2种颜色可染,E有2种颜色可染,共有5X4X3X2X2 = 240 (种)染色根据加法原理,共有180+240=420 (种)染色方

17、式.【注意】给图形染色问题中有的可以直接用乘法原理解决,但如果碰到有首尾相接的图形往往需要分类解决.【答案】420 【巩固】 如右图,有 A, B, C, D四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?【解析】A有4种颜色可选,然后分类:第一类:B , D取相同的颜色.有 3种颜色可染,此时 D也有3种颜色可选.根据乘法原理,不同 的染法有4 M3 M3 =36 (种);第二类:当B, D取不同的颜色时, B有3种颜色可染,C有2种颜色可染,此时 D也有2种颜色 可染.根据乘法原理,不同的染法有4M3M2M2 =48 (种).根据加法原理,共有

18、36 +48 =84 (种)染色方法.【答案】84【巩固】 用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要 用.问:共有多少种不同的染色方法 ?【考点】乘法原理之染色问题【解析】第一步给 而”上色,有4种选择;然后对 学”染色,学”有3种颜色可选;当 奥“,数”取相同的颜色时,有 2种颜色可选,此时【题型】解答思”也有2种颜色可选,不同的涂法有3x2x2=12 种;当 奥“,数”取不同的颜色时,奥”有2种颜色可选,数”剩仅1种颜色可选,此时 思”也只有1种颜色可选(与 学”相同),不同的涂法有3x2x11 =6#.所以,根据加法原理,共有 4 M3父(2M

19、2+2) =72种不同的涂法.【答案】72【例8】 分别用五种颜色中的某一种对下图的A, B, C, D, E, F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?【考点】乘法原理之染色问题【题型】解答【解析】先按A, B, D, C, E的次序染色,可供选择的颜色依次有5, 4, 3, 2, 3种,注意E与D的颜色搭配有3父3=9(种),其中有3种E和D同色,有6种E和D异色.最后染F ,当E与D同色时 有3种颜色可选,当 E与D异色时有 2种颜色可选,所以共有 5M4父2父(3父3+6父2) =840种染法.【答案】840【例9】 将图中的 O别

20、涂成红色、黄色或绿色,要求有线段相连的两个相邻C涂不同的颜色,共有多少种不同涂法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如右上图,当A, B, C, D的颜色确定后,大正方形四个角上的C的颜色就确定了,所以只需求A, B, C, D有多少种不同涂法.按先 A,再B, D,后C的顺序涂色.按A-B-D-C的顺序涂颜色:A有3种颜色可选;当B, D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有3M2M2 = 12种;当B , D取不同的颜色时, B有2种颜色可选,D仅剩1种颜色可选,此时 C也只有1种颜色可选(与A相同),不同的涂法有3M2父1父1 =6(

21、种).所以,根据加法原理,共有 12+6 =18种不同的涂法.【答案】18【例10】用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有 种不同白涂法.(将正四面体任意旋转后仍然不同的涂色法,才 被认为是不同的)【考点】乘法原理之染色问题【难度】4星【题型】填空【关键词】迎春杯,中年级,复赛,第9题【解析】不旋转时共有4X3X2X1=24种染色方式,而一个正四面体有4M=12种放置方法(4个面中选1个作底面,再从剩余 3个面中选1个作正面),所以每种染色方式被重复计算了12次,则不同的染色方法有24+12=2种。【答案】2种【例11】用红、

22、橙、黄、绿、蓝5种颜色中的1种,或2种,或3种,或4种,分别涂在正四面体各个面上, 一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】我们来看正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的)正四面体正加体.展H团按使用了的颜色种数分类:第一类:用了 4种颜色.第一步,选 4种颜色,相当于选1种不用,有5种选法.第二步,如果取定4种颜色涂于4个面上,有2种方法.这一类有5M2 = 10 (种)涂法;第二类:用了 3种颜

23、色.第一步,选 3种颜色,相当于选 2种不用,有5x4+2=10 (种)选法;第二步,取定3种颜色如红、橙、黄3色,涂于4个面上,有6种方法,如下图(图 中用数字1, 2, 3分别表示红、橙、黄 3色).这一类有10黑6=60 (种)涂法;如红、橙2色,涂于4个面上,有3种方法,如下图.这一类有10X3 = 30 (种)涂 法;第四类:用了一种颜色.第一步选 1种颜色有5种方法;第二步,取定 1种颜色涂于4个面上,只 有1种方法.这一类有5父1=5 (种)涂法.根据加法原理,共有 10+60 + 30 + 5 = 105 (种) 不同的涂色方式.【答案】105【例12】用红、黄、蓝三种颜色对一

24、个正方体进行染色使相邻面颜色不同一共有多少种方法?如果有红、黄、蓝、绿四种颜色对正方体进行染色使相邻面颜色不同一共有多少种方法?如果有五种颜色去染又有多少种?(注:正方体不能翻转和旋转 )【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如果一共只有三种颜色供染色,那么正方体的相对表面只能涂上一种颜色,一共有上下、左右、前后一共三组对立面,所以染色的方法有3M2父1=6种方法.如果有四种颜色,那么染色方法可分为两类,一类是从四种颜色中选取三种对正方体进行染色,一共有4M3M2 =24种.另一种是四种颜色都染上,用这种染色方法,就允许有一组相对表面可以染上不同的颜色,选取这组相对表面并染上不同颜色一共有3X(4父3) =36种方法,用其余两种颜色去染其他四个面只有2种方法,共36M2=72种,所以一共有24+72 = 96种方法.如果有5种颜色,那么用其中3种颜色的染色方法有 5父4m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论