九年级数学复习专题动态几何问题_第1页
九年级数学复习专题动态几何问题_第2页
九年级数学复习专题动态几何问题_第3页
九年级数学复习专题动态几何问题_第4页
九年级数学复习专题动态几何问题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学专题动态几何问题第一部分真题精讲【例1】如图,在梯形ABC。中,AD/BC , AD = 3 , DC = 5 , BC = 10,梯形的高为4 .动 点M从3点出发沿线段3c以每秒2个单位长度的速度向终点。运动;动点N同时从。点出发沿线段8以每秒1个单位长度的速度向终点。运动.设运动的时间为/(秒).(1)当出45时,求,的值;(2 )试探究:/为何值时,&WNC为等腰三角形.【思路分析1本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同 学看到可能就会无从下手。但是解决初点问题,首先就是要找谁在动,谁没在动,通过分析 动态条件和静态条件之间的关系求解。对于大多数题目

2、来说,都有一个由动转静的瞬间,就 本题而言,M , N是在动,意味着BM,MC以及DN.NC都是变化的。但是我们发现,和 这些动态的条件密切相关的条件DQBC长度都是给定的而且动态条件之间也是有关系的。 所以当题中设定MN/AB时,就变成了一个静止问题。由此,从这些条件出发,列出方程, 自然得出结果。【解析】解:(1)由题意知,当M、N运动到/秒时,如图,过D作DEAB交BC于E点,则 四边形是平行四边形.:AB/DE , ABMN .:.DE/ MN ,(根据第一讲我们说梯形辅助线的常用做法,成功将MN放在三角形,将动态问题转化成平行时候的静态问题)MC _ NC正一而(这个比例关系就是将静

3、态与动态联系起来的关键)匕解得竺.10-3 517【思路分析2第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是 MN=NC即可,于是就漏掉了 MN = MQMC=CN这两种情况。在中考中如果在动态问题 当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以 后,就成为了较为简单的解三角形问题,于是可以轻松求解【解析】(2)分三种情况讨论:当仞V = NC时,如图#N/_L3c交于/,则有MC = 2FC即.(利用等腰三角形 底边高也是底边中线的性质)1/sinZC = = , CD 53.cosZC =, 5A10-2/ = 2x,5解得/=专.s当必V

4、 = MC时,如图,过M作于H.1 = 2(10 - 2/)x2 56017当MC = CV时,贝(J10-2f = f .10t =3综上所述,当,=三、或9时,为等腰三角形.例2在dABC中,zACB=45 .点D (与点B、C不重合)为射线BC上一动点,连接 AD ,以AD为一且在AD的右侧彳乍的开乡ADEF .(1)如果AB=AC .如图,且点D在线段BC上运动.试判断线段CF与BD之间的位置 关系,并证明你的结论.(2 )如果AB/AC ,如图,且点D在线段BC上运动.(1)中结论是否成立,为什么? (3 )若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P ,设AC=4五

5、, BC = 3 , CD= x ,求线段CP的长.(用含x的式子表示)【思路分析1本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给 出那个“静止点,所以需要我们去分析由D运动产生的变化图形当中,什么条件是不动的。 由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递, 就可以得解。【解析】:(1)结论:CF与BD位置关系是垂直;证明如下:vAB=AC , zACB=45 , .-.zABC=45 .由正方形 ADEF 彳导 AD=AF , -zDAF=zBAC =90 ,.nDAB=nFAC , ./DAB2FAC , .zACF=zABD .-.

6、zBCF=zACB+zACF= 90 .即 CFBD .【思路分析2这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑 一个特殊的条件就行,于是我们和上题一样找AC的垂线,就可以变成第一问的条件,然后 一样求解。(2)CF_LBD.中结论成立.理由是:过点A作AGAC交BC于点G , ,-.AC=AG可证:SAD学CAF .-.zACF=zAGD=45zBCF=zACB+zACF= 90 . 即 CFBD【思路分析3】这一问有点棘手,D在BC之间运动和它在BC延长线上运初时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4X。分类讨论之后利用相似三角形的比

7、例关系即可求出CR(3)过点A作AQ_LBC交CB的延长线于点Q,点D在线段BC上运动时,. zBCA=45 ,可求出 AQ= CQ=4 .DQ=4-x ,易证aAQD-aDCP , .,0 = , DQ AQ 4-x 42:.CP = - + x .4点D在线段BC延长线上运动时,. nBCA=45。,可求出 AQ= CQ=4,.二 DQ=4+x .过 A作 AG_LAC交 CB 延长线于点 G ,则 AAGO三 AACF . CF_i_BD ,.-.AQD-DCP , /. = ,D() AQ4 + x 42: .CP = + x .4【例31已知如图,在梯形ABC。中,AD BC, AD

8、 = 2, 8C = 4,点M是AO的中点,A78c是等边三角形.(1)求证:梯形A8CO是等腰梯形;(2 )动点P、。分别在线段6c和上运动,且NMPQ = 60。保持不变.设 PC = x, = 求y与x的函数关系式;(3 )在(2 )中,当),取最小值时,判断PQC的形状,并说明理由.mA /木D60【思路分析1本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考京 几何方面。第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。第二问和例 1 一样是双动点问题,所以就需要研究在RQ运动过程中什么东西是不变的。题目给定/ MPQ=60。,这个度数的意义在哪里?其实就是将

9、静态的那个等边三角形与动态条件联系了 起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系,怎么 证相似三角形呢?当然是利用角度咯.于是就有了思路.【解析】(1)证明:/W8C是等边三角形:,MB = MC, ZMBC = ZMCB = 60何是AO中点:.AM=MDAD / BCZAMB = NMBC = 60, ZDMC = /MCB = 60 /. /AMB 9/DMCAB = DC.梯形A8C。骨蝴形.(2 )解:在等边中,MB = MC = BC = 4, ZMBC = ZMCB = 60,NMPQ = 60(这个角度传递非常重要,大家要仔细揣丁. /BMP

10、+ NBPM = /BPM + ZQPC = 120摩):.NBMP = NQPC:.4BMP s MQPPC _CQPC = x, MQ = y :.BP = 4-x, QC = 4-y匕.y=lv2_x+44 4-%4(设元以后得出比例关系轻松化成二次函数的样子)【思路分析2第三问的条件又回归了当初点静止时的问题。由第二问所得的二次函数,很 轻易就可以求出当X取对称轴的值时Y有最小值。接下来就变成了 “给定PC= 2 ,求PQC 形状”的问题了。由已知的BC=4 ,自然看出P是中点,于是问题轻松求解。(3)解:PQC为直角三角形-y = l(x-2)2+3当y取最小值时,x = PC =

11、2:.P 是 BC 的中点,MP BC,而 ZMPQ = 60,:.ZCPQ = 30,ZPQC = 90以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某 边相等,某角固定时,将动态问题化为静态问期去求解。如果没有特殊条件,那么就需要研 究在动点移动中哪些条件是保持不变的。当动的不是点,而是一些具体的图形时,思路是不 是一样呢噬下来我们看另外两道题.【例4】已知正方形ABC。中,石为对角线8。上一点,过E点作EF上BD交BC于F ,连 接DF , G为。中点,连接EG,CG .(1 )直接写出线段EG与CG的数量关系;(2 )将图1中MEF饶B点逆时针旋转45。

12、,如图2所示,取DF中点G,连接EG, CG ,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3 )将图1中绕3点旋转任意角度,如图3所示,再连接相应的线段,问(1 )中 的结论是否仍然成立?(不要求证明)【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。从旋转45。到旋转任意角 度,要求考生讨论其中的不动关系。第一问自不必说,两个共斜边的直角三角形的斜边中线 自然相等。第二问将cBEF旋转45。之后,很多考生就想不到思路了。事实上,本题的核心 条件就是G是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三 角形就成为了分析的关罹所在。连接AG之后抛

13、开其他条件单看G点所在的四边形ADFE , 我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G点 做AD,EF的垂线。于是两个全等的三角形出现了。(1 ) CG = EG(2)(1)中结论没有发生变化,即CG = EG.证明:连接AG ,过G点作MV_LAZ)于M ,与律的延长线交于N点.在AZMG与ADCG中,: AD = CD&DG = /CDG,DG = DG ,:.ADAGDCG .AG = CG.在ADMG与MVG中,IZDGM = /FGN, FG = DG, /MDG = NNFG ,:,SDMG冬江NG.:,MG = NG在矩形AEW中,AM = EN

14、在 RfMMG 与 RfENG 中 t. AM=EN,MG = NG ,S.AMGENG .AG = EG.:.EG = CG【思路分析2第三间纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。但是我们不应该止步于此。将这道题放在动态问题专题中也是出于此原因,如果-BEF任意旋转, 哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:在2BEF的旋转过程中,始终不变的依然是G 点是FD的中点。可以延长一倍EG到H,从而构造一个和EFG全等的三角形,利用BE=EF 这一条件将全等过渡。要想办法证明三角形ECH是一个等腰直角三角

15、形,就需要证明三角 形EBC和三角形CGH全等,利用角度变换关系就可以得证了。(3)(1)中的结论仍然成立.【例5】已知正方形ABCD的边长为6cm,点E是射线BC上的一个动点,连接AE 交射线DC于点F ,将SBE沿直线AE翻折,点B落在点B处.BF(1)当区=1 时,CF=cm,CE(2)当竺=2时,求sin/DAB的值; CEBF(3 )当=x时(点C与点E不重合),请写出aABE翻折后与正方形ABCD公共 CE部分的面积y与x的关系式,(只要写出结论,不要解题过程)【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就是轴对称)也是一大热点。 这一题是卷的压轴题,第一问给出比例为1

16、,第二问比例为2 .第三问比例任意,所以也是 一道很明显的从一般到特殊的递迸式题目。同学们需要仔细把握翻折过程中哪些条件发生了 变化,哪些条件没有发生变化。一般说来,翻折中,角,边都是不变的,所以轴对称图形也 意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系。尤其注意的是, 本题中给定的比例都是有两重情况的,E在BC上和E在延长线上都是可能的,所以需要大 家分类讨论,不要遗漏。【解析】(1) CF=6 cm ;(延长之后一眼看出,EAZY)(2 )如图1 ,当点E在BC上时,延长AB交DC于点M ,RF 4 R:ABIICF ABE-aFCE,,二 =.CE FCBE=2 ,

17、CF=3.CE/ ABllCF f /.zBAE=zF .图1又nBAE=nB AE f nB AE=zF . /. MA=MF .设 MA=MF=kf 贝U MC=k-3 , DM=9-k .在RtMDM中,由勾股定理得:1 q5解是这类题型中比较重要的方法)k2=(9-k)2+62,解得 k=MA=. z. DM = j .(设元求 22sinzDABf =如图2,当点E在BC延长线上时,延长AD交B E于点N ,同可彳导NA=NE.设 NA=NE=m ,贝U B N = 12-m .在RhAB N中,由勾股定理,得15Qm2=(12-m)2+62,解得 m=AN=- . B N =-.

18、22sinzDAB =BN _3布一片(3)当点E在BC上时,y=-;x + 1(所求s B* E的面积即为MBE的面积,再由相似表示出边长)当点E在BC延长线上时,y=心 .【总结】通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形 动这么几种可能的方式。动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考 生拿到题以后不要掠,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些 不变的量。只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松 了.为更好的帮助考生笔者总结这种问题的一般思路如下:第一、仔细读题,分析给定条件中刃陛量是运动的,哪些量是不动的。针对运动的量,要 分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。针对不动的量,要分析它们 和动量之间可能有什么关系,如何建立这种关系。第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的 关系。如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。第三.做题过程中时刻注意分类讨论,不同的情况下题目是否有不同的表现,很多同学丢 分就丢在没有讨论,只是想当然看出了题目所给的那一种图示方式,没有想到另外的方式, 如本讲例5当中的比例关系意味着两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论