高一数学课件:1.3_集合的基本运算(新人教版必修1)._第1页
高一数学课件:1.3_集合的基本运算(新人教版必修1)._第2页
高一数学课件:1.3_集合的基本运算(新人教版必修1)._第3页
高一数学课件:1.3_集合的基本运算(新人教版必修1)._第4页
高一数学课件:1.3_集合的基本运算(新人教版必修1)._第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、开始开始 学点一学点一学点二学点二学点三学点三学点四学点四学点五学点五学点六学点六学点七学点七1.一般地,由所有属于集合一般地,由所有属于集合A或属于集合或属于集合B的元素组成的集合,称为集合的元素组成的集合,称为集合A与与B的的 ,记作,记作 ,即,即AB= 。 2.一般地,由属于集合一般地,由属于集合A且属于集合且属于集合B的所有元素组成的集合,称为集合的所有元素组成的集合,称为集合A与与B的的 ,记作,记作 ,即,即AB= .3.(1)一般地,如果一个集合含有我们所研究问题中涉及的所有元素,)一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为那么就称这个集合为 ,

2、通常记作,通常记作 .(2)对于一个集合,由全集)对于一个集合,由全集U中不属于集合中不属于集合A的所有元素组成的集合称的所有元素组成的集合称 为集合为集合A相对于全集相对于全集U的的 ,记作,记作 ,即即 .并集并集ABx|xA或或xB交集交集ABx|xA,且且xB全集全集U补补 集集UACUAxUx|xACU且返回返回 4.(1)1.并集并集ABx|xA或或xB对于任意的集合对于任意的集合A, B,有,有AA= ,AA= ,AB= ,AB= .若若AB=B,则则A B;若;若AB=B,则则B A.(2)由补集的定义可知,对任意集合)由补集的定义可知,对任意集合A,有,有A(CUA)= ,

3、A(CUA)= .5.用集合语言描述下面几个图:用集合语言描述下面几个图:(1)A B,AB= ,AB= ;(2)A B,AB= ,AB= ;(3)A =B,AB= ,AB= .BAABA(B)A(B)AABABAU返回返回 学点一学点一 基本概念的考查基本概念的考查已知已知U=1,2,3,8,A=1,2,3,4,B=2,3,4,5.求求:(1)AB; (2)A(CUB);(3)(CUA)(CUB); (4)(CUA)(CUB)【分析分析】由集合的交、并、补概念直接求解由集合的交、并、补概念直接求解. 【解析解析】 U=1,2,3,8,A=1,2,3,4,B=2,3,4,5, CUA=5,6,

4、7,8, CUB=1,6,7,8. (1)AB=1,2,3,42,3,4,5=2,3,4. (2)A(CUB)=1,2,3,41,6,7,8=1,2,3,4,6,7,8. (3)(CUA)(CUB)=5,6,7,81,6,7,8= 6,7,8. (4)(CUA)(CUB)=5,6,7,81,6,7,8=1,5,6,7,8 .【评析评析】集合的简单运算可由基本概念直接求解集合的简单运算可由基本概念直接求解.返回返回 已知集合已知集合S=x|1x7,A=x|2x5,B=x|3x7.求:求:(1)(CSA)(CSB); (2)CS(AB);(3)(CSA)(CSB); (4)CS(AB).解解:AB

5、=x|3x5, AB=x|2x7,CSA=x|1x 2x|5x7, CSB=x|1x37.(1)()(CSA)(CSB)=x|1x2或或x=7.(2)CS(AB)=x|1x2或或x=7.(3)()(CSA)(CSB)=x|1x3或或5x7.(4)CS(AB)=x|1x3或或5x7.返回返回 【解析解析】M=x|y2=x+1=x|x+10 =x|x-1, P=x|y2=-2(x-3)=x|x3, MP=x|x-1,且,且x3=x|-1x3.故应选故应选C.学点二学点二 交交 集集【分析分析】由集合的定义由集合的定义,集合集合M表示方程表示方程y2=x+1中中x的范围的范围,集合集合P表示方程表示

6、方程y2=-2(x-3)中中x的范围的范围,故应先化简集合故应先化简集合M,P.【评析评析】理解集合的表示形式理解集合的表示形式,掌握其意义掌握其意义,利用交利用交 集定义可解决所给问题集定义可解决所给问题. 已知集合已知集合M=x|y2=x+1,P=x|y2=-2(x-3),那么那么MP=( )A. (x,y)x= ,y= B.x|-1x3C.x|-1x3 D.x|x3 35362C返回返回 设集合设集合A=(x,y)|2x+y=1,x,yR,B=(x,y)|a2x+2y=a,x,yR,若若AB=,求求a的值的值.解解:集合:集合A,B的元素分别是二元一次方程的元素分别是二元一次方程2x+y

7、=1和和a2x+2y=a的解的解,因为两方程的公共解集因为两方程的公共解集AB=,所以方程组所以方程组无解无解.列方程组列方程组 得得(4-a2)x=2-a则则 即即a=-2. 1222yxayxa02042aa返回返回 学点三学点三 并并 集集设设A=4,5,6,8,B=3,5,7,8,下列集合中与下列集合中与AB相等的集合相等的集合是是( )A.4,5,6,7,8 B.3,4,6,7,10,16C.3,4,5,6,7,8,9 D.3,4,5,6,7,8【分析分析】注意到集合注意到集合A与集合与集合B的并集的定义中的并集的定义中: (1)集合集合AB中的元素必须是集合中的元素必须是集合A或集

8、合或集合B的元素的元素, (2)集合集合AB包含集合包含集合A与集合与集合B中的所有元素中的所有元素.D返回返回 【评析评析】在判定或书写集合在判定或书写集合A与集合与集合B的并集时的并集时,既不能遗既不能遗漏元素漏元素, 也不能增添元素也不能增添元素,要严格地理解、掌握并集的定义要严格地理解、掌握并集的定义.【解析解析】A.3B,但但34,5,6,7,8,4,5,6,7,8AB;B.10A,10B,16A,16B,3,4,6,7,10,16AB; C.9A,9B,AB3,4,5,6,7,8,9; D.显然显然AB=3,4,5,6,7,8. 故应选故应选D.返回返回 已知已知A=x|x-1或或

9、x3,B=x|ax4,若若AB=R,则实数则实数a的的取值范围是取值范围是( )A.3a4 B.-1a4 C.a-1 D.a-1解解:A=x|x-1或或x3,B=x|ax2m-1,即,即m2, 此时总有此时总有AB=A=A成立成立.(2)若)若B,则,则 解得解得2m3. 综合综合(1)(2)知知,m的取值范围是的取值范围是m|m2m|2m3=m|m3. 51212121mmmm【评析评析】由由AB=A可得可得BA,而而BA包括两种情况,包括两种情况,即即B=和和B.本题常犯的错误是把本题常犯的错误是把B=漏掉而只讨论漏掉而只讨论B这一种情况这一种情况.返回返回 设集合设集合A=a2, a+1

10、,-3,B=a-3,2a-1,a2+1,AB=-3,求实数求实数a的值的值.解:解:AB=-3,-3B.a-3= -3或或2a-1= -3,a=0或或a= -1.当当a=0时时,A=0,1,-3,B=-3,-1,1,此时此时AB=1,-3,与与AB=-3矛盾矛盾,故舍去故舍去.当当a= -1时时,A=1,0,-3,B=-4,-3,2,满足满足AB=-3,a= -1.返回返回 学点六学点六 VennVenn图的应用图的应用【分析分析】关于集合的交、并、补的问题关于集合的交、并、补的问题,通常可以由分析法通常可以由分析法找出集合中一定有或一定没有的元素找出集合中一定有或一定没有的元素,对它们逐一检

11、验对它们逐一检验;或利用或利用Venn图图,把元素一一放入图中相应位置把元素一一放入图中相应位置,从而写出所从而写出所求集合求集合.【解析解析】解法一:利用解法一:利用Venn图图,在图中在图中标出各个元素的相应位置标出各个元素的相应位置,可以直接写可以直接写出出A与与B,A=2,3,5,7,B=1,2,9.若集合若集合U=x|x是小于是小于10的正整数的正整数,AU,BU,且且(CUA)B=1,9,AB=2,(CUA)(CUB)=4,6,8,试求试求A与与B.返回返回 解法二:解法二:AB=2,(CUA)B=1,9,B=(AB)(CUA)B=1,2,9.AB=CU(CUA)(CUB)=1,2

12、,3,5,7,9,又又B=1,2,9,AB=2,A=2,3,5,7.【评析评析】事实上事实上,在解决这类问题时在解决这类问题时,将将Venn图的使用与分图的使用与分析法相结合更准确简捷析法相结合更准确简捷.返回返回 设设A,B都是不超过都是不超过8的正整数组成的全集的正整数组成的全集U的子集的子集AB=3,(CUA)(CUB)=1,8,(CUA)B=4,6,求集合求集合A,B.解解:U=1,2,3,4,5,6,7,8,在,在Venn图中将图中将1,2,3,4,5,6,7,8分别填入到相应的位置中去,分别填入到相应的位置中去,则由则由AB=3,CUACUB=1,8,(CUA)B=4,6得得A(C

13、UB)=2,5,7.A=2,3,5,7,B=3,4,6.返回返回 学点七学点七 集合运算的应用集合运算的应用已知集合已知集合S=1,3,x3+3x2+2x,A=1,|2x-1|,如果如果CSA=0,则这样的实数则这样的实数x是否存在是否存在?若存在若存在,求出求出x;若不存在若不存在,说明理由说明理由.【分析分析】解决此问题的关键是正确理解解决此问题的关键是正确理解CSA=0的意义的意义,它有两层含义它有两层含义,即即0S,但但0A,这样解题思路就清楚了这样解题思路就清楚了.【解析解析】CSA=0,0S,但但0A, x3+3x2+2x=0,即即x(x+1)(x+2)=0,解得解得x1=0,x2

14、= -1,x3= -2. 当当x=0时时,|2x-1|=1,A中已有元素中已有元素1,不满足集合的性质不满足集合的性质;当当x=-1时时,|2x-1|=3,3S;当当x= -2时时,|2x-1|=5,但但5S.实数实数x的值存在的值存在,且它只能是且它只能是-1.返回返回 【评析评析】解答此题时解答此题时,我们由我们由CSA=0求出求出x1=0,x2=-1,x3=-2之后之后,验证其是否符合题目的隐含条件验证其是否符合题目的隐含条件AS是必要的是必要的,否则否则就会误认为就会误认为x1=0或或x3=-2也是所求的实数也是所求的实数x,从而得出错误的从而得出错误的结论结论.集合概念及其基本理论是

15、近、现代数学的最基础的集合概念及其基本理论是近、现代数学的最基础的内容之一内容之一,学好这部分知识的目的之一就是在于应用学好这部分知识的目的之一就是在于应用. 因此,因此,一定要学会读懂集合的语言和符号一定要学会读懂集合的语言和符号,并能运用集合的观点并能运用集合的观点研究、判断和处理简单的实际问题研究、判断和处理简单的实际问题.返回返回 解解:(:(1)如)如A=1,2,3,B=2,3,4,则则A-B=1.(2)不一定相等,由()不一定相等,由(1)知)知B-A=4,而,而A-B=1,B-AA-B.再如再如A=1,2,3,B=1,2,3,A-B=,B-A= ,此时此时A-B=B-A.故故A-

16、B与与B-A不一定相等不一定相等.(3)因为)因为A-B=x|x6, B-A=x|-6x4, A-(A-B)=x|4x6, B-(B-A)=x|4x4,B=x|x|6,求,求A-(A-B)及)及B-(B-A),由此),由此你可以得到什么更一般的结论?(不必证明)你可以得到什么更一般的结论?(不必证明)返回返回 1.1.在解题时如何用好集合语言在解题时如何用好集合语言? ?解集合问题解集合问题, ,不仅仅是运用集合语言不仅仅是运用集合语言, ,更重要的是明确集合语言更重要的是明确集合语言所蕴含的真实的数学含义所蕴含的真实的数学含义, ,集合语言的转换过程集合语言的转换过程, ,实质就是在进实质就

17、是在进行数学问题的等价转换时行数学问题的等价转换时, ,向着我们熟悉的能够解决的问题转向着我们熟悉的能够解决的问题转化化. .2.2.在学习时应注意什么问题在学习时应注意什么问题? ?(1)(1)对于交集、并集、全集、补集等概念的理解对于交集、并集、全集、补集等概念的理解, ,要注意教材中要注意教材中的实例和的实例和VennVenn图的直观作用图的直观作用. .(2)(2)要善于将三者进行比较记忆要善于将三者进行比较记忆, ,找出它们之间的联系与区别找出它们之间的联系与区别. .返回返回 (3)(3)注意在集合运算中注意在集合运算中, ,运用运用VennVenn图图, ,借助于数轴等几何方借助

18、于数轴等几何方法直观理解法直观理解. .(4)(4)学会集合语言的运用学会集合语言的运用, ,并逐渐学会用集合的观点研究并逐渐学会用集合的观点研究事物的内涵与外延事物的内涵与外延. .3.3.怎样理解全集和补集?怎样理解全集和补集?全集并非包罗万象,含有任何元素的集合,它仅仅含有全集并非包罗万象,含有任何元素的集合,它仅仅含有我们所要研究的问题中所涉及的所有元素,如研究方程我们所要研究的问题中所涉及的所有元素,如研究方程实根,全集取为实根,全集取为R;R;研究整数,全集取为研究整数,全集取为Z Z,同时,要理,同时,要理解补集的定义的解补集的定义的 用法用法. .返回返回 1.1.交集与并集是集合的两种不同运算交集与并集是集合的两种不同运算, ,对它们概念的理对它们概念的理解要特别注意解要特别注意“且且”与与“或或” 的区别的区别. .交集和并集的交集和并集的符号符号“”“”“”既有相同的地方既有相同的地方, ,但又完全不同但又完全不同, ,不不要混淆要混淆. .2.2.对于交集对于交集“AB=x|xA,AB=x|xA,且且xBxB”, ,不能简单地认不能简单地认为为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论