4 第四章 习习题 参考答案_第1页
4 第四章 习习题 参考答案_第2页
4 第四章 习习题 参考答案_第3页
4 第四章 习习题 参考答案_第4页
4 第四章 习习题 参考答案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第四章习题参考答案 P 1357. 1)用OLS法建立居民人均消费支出与可支配收入的线性模型。create u 20; data consump income;ls consump c incomeDependent Variable: CONSUMPMethod: Least SquaresSample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOMER-squared Mean dependent varAdjusted R-squared . dependent var.

2、 of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)线性模型如下: CONSUMP = 5389 + *INCOME2)检验模型是否存在异方差性 i) 图:是否有明显的散点扩大/缩小/复杂型趋势 scat income consumpii)解释变量残差图:是否形成一条斜率为0的直线 scat income resid2 或者 genr ei2=resid2; scat income

3、ei2由两个图形,均可判定存在递增型异方差。 还可以用帕克检验,戈里瑟检验,戈德菲尔德-匡特检验,怀特检验等方法。iii) 戈德菲尔德-匡特检验:共有20个样本,去掉中间1/4个样本(4个),剩余大样本、小样本各8个。Sort income; smpl 1 8; ls consump C incomeSmpl 13 20; ls consump C income,存在异方差。iV)怀特检验:因为只有一个变量,故是否含有交叉项是一样的。 Viewresidual testwhite heteroskedastcity(cross terms / no cross terms )White Het

4、eroskedasticity Test:F-statistic ProbabilityObs*R-squared ProbabilityDependent Variable: RESID2Method: Least SquaresSample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOMEINCOME2R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike in

5、fo criterionSum squared resid+10 Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic),存在异方差。还可以通过概率判定存在异方差。3)若存在异方差,用适当的方法估计模型对数(加权最小二乘法)ls consump C income; genr eijdz=abs(resid)ls(w=1/eijdz) consump C incomeDependent Variable: CONSUMPMethod: Least SquaresSample: 1 20Incl

6、uded observations: 20Weighting series: 1/EIJDZVariableCoefficientStd. Errort-StatisticProb. CINCOMEWeighted StatisticsR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Pro

7、b(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Sum squared residDurbin-Watson statWhite Heteroskedasticity Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: STD_RESID2Method: Least SquaresSample: 1

8、 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOME或,均可判定加权处理后的模型不存在异方差。模型经取对数或加权处理都可以一定程度地消除异方差性。ls log(consump) C log(income); genr eijdz=abs(resid);ls(w=1/eijdz) log(Consump) C log(Income)普通最小二乘模型CONSUMP = 5389 + *INCOME加权最小二乘模型 CONSUMP = + *INCOME对数模型:LOG(CONSUMP)=+

9、*LOG(INCOME)加权对数模型:LOG(CONSUMP)=+ *LOG(INCOME)对各种模型的White检验结果,综合如下模型不取对数F-statisticProbabilityObs*R-squaredProbability模型取对数F-statisticProbabilityObs*R-squaredProbability模型不取对数,但加权F-statisticProbabilityObs*R-squaredProbability模型取对数,且加权F-statisticProbabilityObs*R-squaredProbability可见,各种方法都可以起到抑制异方差的效果

10、。8. 1)若采用对数模型,是否存在序列相关性ls log(industry) C log(invest)Dependent Variable: LOG(INDUSTRY)Method: Least SquaresSample: 1901 1921Included observations: 21VariableCoefficientStd. Errort-StatisticProb. CLOG(INVEST)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info cri

11、terionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)LOG(INDUSTRY) = 1. + *LOG(INVEST)i) 散点图ii) 随t变化的散点图 由两个图形,均可判定存在正序列相关。还可以利用回归检验法,D -W检验,拉格朗日乘数检验等方法。iii) D -W检验(DL(21, =, DU(21, =.= < DL(21, 2,=,至少存在一阶正自相关;但.只适用判别一阶自相关。iv) 拉格朗日乘数检验Breusch-Godf

12、rey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityVariableCoefficientStd. Errort-StatisticProb. CLOG(INVEST)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent varLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)一阶LM Test:LM TestRESID(-1)的t统计

13、量显著(P=<),至少存在一阶自相关。2)按照一阶自相关,用杜宾两步法和广义最小二乘法估计原模型。杜宾两步法:ls y c y(-1) x x(-1)y(-1)前面的系数:,代回差分模型,再次进行OLS估计得到原模型的参数估计量,即 。genr y = log(industry); genr x = log(invest);Step 1: ls y c y(-1) x x(-1)Dependent Variable: YMethod: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjus

14、ting endpointsVariableCoefficientStd. Errort-StatisticProb. CY(-1)XX(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Step 2: ls y - * y(-1) c x - * x

15、(-1)Dependent Variable: *Y(-1)Method: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C*X(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid S

16、chwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic).= 介于 DL(21-1, 2,=与DU(21-1, 2,=之间,不能判别是否存在一阶正自相关,但可由拉格朗日乘数法判断,此时不存在序列相关性。Breusch-Godfrey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: RESIDMethod: Least Squar

17、esVariableCoefficientStd. Errort-StatisticProb. C*X(-1)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)拉格朗日乘数检验:D-W stat: > ,不存在序列相关性。所以 矫正后

18、的模型:LOG(INDUSTRY) = + *LOG(INVEST)原模型:LOG(INDUSTRY) = 1. + *LOG(INVEST)广义差分法ls y c x ar(1) (不能判定是否存在一阶自相关)Dependent Variable: YMethod: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsConvergence achieved after 15 iterationsVariableCoefficientStd. Errort-Sta

19、tisticProb. CXAR(1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)但由LM检验:概率为>,故此时不存在序列相关性。因此模型只存在一阶自相关性。Breusch-Godfrey Serial Correlation LM Test:F

20、-statisticProbabilityObs*R-squared ProbabilityDependent Variable: RESIDVariableCoefficientStd. Errort-StatisticProb. CXAR(1)RESID(-1)Durbin-Watson stat Prob(F-statistic)模型为 Y = + *X + * AR(1) 与杜宾两步法矫正的模型:LOG(INDUSTRY) = + *LOG(INVEST) 非常接近。广义最小二乘法若仅存在一阶自相关ls log(industry) C log(invest) genr resid_co

21、rr = residls resid_corr resid_corr(-1) 注:resid是内置变量;Dependent Variable: RESID_CORRMethod: Least SquaresVariableCoefficientStd. Errort-StatisticProb. CRESID_CORR(-1)R-squared Mean dependent varDurbin-Watson stat Prob(F-statistic)直接计算 模型为LOG(INDUSTRY)=+*LOG(INVEST),误差偏大。3)采用差分形式,估计原模型。ls D(industry) C

22、 D(invest)ls industryindustry(-1) C investinvest(-1)Dependent Variable: D(INDUSTRY)Method: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. CD(INVEST)R-squared Mean dependent varAdjusted R-squared . dependent var

23、. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Breusch-Godfrey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: RESIDMethod: Least SquaresVariableCoeffic

24、ientStd. Errort-StatisticProb. CD(INVEST)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)原模型存在一阶正自相关,但经过一阶自相关差分处理后不存在序列相关性(.= > 或=>)。模型为:

25、D(INDUSTRY) = + *D(INVEST)说明:在有的方法不能判别自相关性时,可以用其他方法测试。9. 说明下述回归模型是否可靠Ls CONSUMP C INCOME WEALTHDependent Variable: CONSUMPMethod: Least SquaresSample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb. CINCOMEWEALTHR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schw

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论