六年级奥数正式教材学生用(共42页)_第1页
六年级奥数正式教材学生用(共42页)_第2页
六年级奥数正式教材学生用(共42页)_第3页
六年级奥数正式教材学生用(共42页)_第4页
六年级奥数正式教材学生用(共42页)_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上目录 (1) 数字谜小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”。这个地名第1个字可能是天。“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。这样谜底就出来了:天津。算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用、等图形符号或字母表示。文字算式谜是前两种算式

2、谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。文字算式谜也是最难的一种算式谜。在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。横式字谜1、 例题与方法指导例1 ,8,97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。那么所填的3个数字之和是多少?思路导航:150*3-8-97-5=340所以3个数之和为3+4+5=12。例2 在下列算式的中填上适当的数字,使得等式成立:(1)6456=0,(2)7837=1,(3)332=17,(4)858=6。分析:(1) 6104/56=1

3、09 (2)7548/37=204(3) 3393/29=117(4)8468/58=146例3 在算式40796=9998的各个方框内填入适当的数字后,就可以使其成为正确的等式。求其中的除数。分析:40796/102=399.98。例4 我学数学乐我学数学乐=数数数学数数学学数学在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。如果“乐”代表9,那么“我数学”代表的三位数是多少? 分析:学=1,我=8,数=6 ,81619*81619=例5 ()=24在式中的4个方框内填入4个不同的一位数,使左边的数比右边的数小,并且等式成立。思路导航:这样,我们可以先用字母代替数字,原等式写

4、成:a/(b/c/d)=a/(b/c*d)=a*c*d/b,(abc、”等。表示运算意义的表达式,通常是使用四则运算符号,例如ab=3a-3b,新运算使用的符号是,而等号右边表示新运算意义的则是四则运算符号。正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。1、 例题与方法指导例1.设 ab都表示数,规定ab表示a的4倍减去b的3倍,即ab=4a-

5、3b,试计算56,65。解56-54-63=20-18=2 65=64-53=24-15=9说明 例1定义的没有交换律,计算中不得将前后的数交换。例2.对于两个数a、b,规定ab表示3a+2b,试计算(56)7,5(67)。思路导航:先做括号内的运算。解 (56)7=(53+62)7=277=273+72=95 5(67)=5(63+72)=532=53+322=79说明 本题定义的运算不满足结合律。这是与常规的运算有区别的。例3.已知23=234,42=45,一般地,对自然数a、b,ab 表示a(a+1)(a+b-1).计算(63)-(52)。思路导航:原式=67-56 =336-30规定:

6、a=a+(a+1)+(a+2)+(a+b-1),其中a,b表示自然数。例4.求1100的值。已知x10=75,求x.思路导航:(1)原式=1+2+3+100=(1+100)1002=5050(2)原式即x+(x+1)+(x+2)+(X+9)=75,所以10X+(1+2+3+9)=75 10x+45=75 10x=30 x=32、 巩固训练1.若对所有b,ab =ax,x是一个与b无关的常数;ab=(a+b)2,且(13)3=1(33)。求(14)2的值。2. 如果规定:=234,=345,=456,=8910,求+-+-+-的值。3、 能力提升(3) 不规则图形面积计算(1)我们曾经学过的三角

7、形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。一、例题与方法指导例1如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”

8、三角形(ABG、BDE、EFG)的面积之和。例2如右图,正方形ABCD的边长为6厘米,ABE、ADF与四边形AECF的面积彼此相等,求三角形AEF的面积. 思路导航:ABE、ADF与四边形AECF的面积彼此相等,四边形 AECF的面积与ABE、ADF的面积都等于正方形ABCD的。在ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,ECF的面积为222=2。所以SAEF=S四边形AECF-SECF=12-2=10(平方厘米)。BC例3两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。思路导航:在等腰直角三角形ABC中AB

9、=10EF=BF=AB-AF=10-6=4,阴影部分面积=SABG-SBEF=25-8=17(平方厘米)。例4如右图,A为CDE的DE边上中点,BC=CD,若ABC(阴影部分)面积为5平方厘米.求ABD及ACE的面积.思路导航:取BD中点F,连结AF.因为ADF、ABF和ABC等底、等高,所以它们的面积相等,都等于5平方厘米.ACD的面积等于15平方厘米,ABD的面积等于10平方厘米。又由于ACE与ACD等底、等高,所以ACE的面积是15平方厘米。二、巩固训练1.如右图,在正方形ABCD中,三角形ABE的面积是8平方厘米,它是三角形DEC的面积的,求正方形ABCD的面积。D2.如右图,已知:S

10、ABC=1,AE=ED,BD=BC.求阴影部分的面积。3.如右图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?4.如右图,梯形ABCD的面积是45平方米,高6米,AED的面积是5平方米,BC=10米,求阴影部分面积.5.如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.(4) 不规则图形面积计算(2)不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、

11、差关系,同时还常要和“容斥原理”(即:集合A与集合B之间有:SABSASb-SAB)合并使用才能解决。1、 例题与方法指导例1.如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面

12、积是正方形的一半.例2.如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。解:由容斥原理 S阴影S扇形ACBS扇形ACD-S正方形ABCD例3如右图,矩形ABCD中,AB6厘米,BC4厘米,扇形ABE半径AE6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。例4.如右图,直角三角形ABC中,AB是圆的直径,且AB20厘米,如果阴影()的面积比阴影()的面积大7平方厘米,求BC长。分析 已知阴影()比阴影()的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可

13、求出三角形ABC的面积,进而求出三角形的底BC的长.2、 巩固训练1.如右图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。分析 阴影部分的面积,等于底为16、高为6的直角三角形面积与图中(I)的面积之差。而(I)的面积等于边长为6的正方形的面积减去以6为半径的圆的面积。2.如右图,将直径AB为3的半圆绕A逆时针旋转60,此时AB到达AC的位置,求阴影部分的面积(取=3). 3.如右图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积.4.如下页右上图,ABC是等腰直角三角形,D是半圆周上的中点,BC是半圆的直径,且AB=BC=10,求阴影部分面积(取3.14)。总结:对于

14、不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、 相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了. 二、 相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可. 三、 直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求

15、阴影部分的面积,通过分析发现它就是一个底是2,高为4的三角形,面积可直接求出来。四、 重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、 辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便. 六、 割补法:这种方法是把原图形的一部分切

16、割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半. 七、 平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如右图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。八、 旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求图(1)中阴影部

17、分的面积,可将左半图形绕B点逆时针方向旋转180,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、 对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。十、重叠法:这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”(SABSASB-SAB)解决。例如,欲求右图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因

18、为阴影部分的面积恰好是两个扇形重叠的部分. (5) 抽屉问题如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。说明这个原理是不难的。假定这n个抽屉中,每一个抽屉内

19、的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。从最不利原则也可以说明抽屉原理1。为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。这就说明了抽屉原理1。1、 例题与方法指导例1.某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友?分析与解:1996年是闰年,这年应有366天。把366天看作3

20、66个抽屉,将367名小朋友看作367个物品。这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。因此至少有2名小朋友的生日相同。例2.在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。我们将余数的这三种情形看成是三个“抽屉”。一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。这两个数的差必能被3整除。例3.在任意的五个自然数中,是否其中必有三个数的和是3的倍数?分析与解:根据例2的讨论,任

21、何整数除以3的余数只能是0,1,2。现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。第一种情形。有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。第二种情形。至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2。因此这三个数之和能被3整除。综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数。2、 巩固训练1. 有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总

22、数与桔子的总数都是偶数?2.用红、蓝两种颜色将一个25方格图中的小方格随意涂色(见右图),每个小方格涂一种颜色。是否存在两列,它们的小方格中涂的颜色完全相同?3.在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间的距离不大于1厘米?3、 拓展提升1.有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。2. 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?3.从2、4、6、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34

23、。(6) 逻辑推理曾经爱因斯坦出过一道测试题, 他说世界上有98%的人回答不出!让我们一起来看看是什么题呢。在一条街上有5座颜色不同的房子,住着5个不同国家的人,他们抽着5种不同的烟,喝着5种不同的饮料,养着5种不同的宠物。有下面15个已知条件,求解。1、英国人住红色房子。2、瑞典人养狗。3、丹麦人喝茶。4、绿色房子在白色房子左面。5、绿色房子主人喝咖啡。6、抽Pall Mall香烟的人养鸟。7、黄色房子主人抽Dunhill香烟。8、住在中间房子的人喝牛奶。9、挪威人住第一间房。10、抽Blends香烟的人住在养猫的人隔壁。11、养马的人住抽Dunhill香烟的人隔壁。12、抽Blue Mas

24、ter的人喝啤酒。13、德国人抽Prince香烟。14、挪威人住蓝色房子隔壁。15、抽Blends香烟的人有一个喝水的邻居。问:哪个国家的人养鱼?这道题为什么会难倒这么多人呢,首先,我们就来研究一下关于他的最基本的逻辑问题吧。1、 例题与方法指导例1.某地质学院的学生对一种矿石进行观察和鉴别:甲判断:不是铁,也不是铜。乙判断:不是铁,而是锡。丙判断:不是锡,而是铁。经化验证明:有一个人的判断完全正确,有一个人说对了一半,而另一个人完全说错了。你知道三人中谁是对的,谁是错的,谁是只对一半的吗?思路导航:丙全说对了,甲说对了一半,乙全说错了。先设甲全对,推出矛盾后,再设乙全对,又推出矛盾,则说明丙

25、全对,甲说对了一半,乙全说错了。例2.数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌。”结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁得铜牌?思路导航:小华得金牌,小强得银牌,小明得铜牌。(1)若小明得金牌,小华一定“不得金牌”,这与“老师只猜对了一个”相矛盾,不合题意。(2)若小华得金牌,那么“小明得金牌”与“小华不得金牌”这两句都是错的,那么“小强不得铜牌”应是正确的,那么小强得银牌,小明得铜牌。例3.一位法官在审理一起盗窃案中,对涉及到的四名嫌疑犯甲、乙、丙、丁进行了审问。四人分别供述如下:甲说:“

26、罪犯在乙、丙、丁三人之中。”乙说:“我没有做案,是丙偷的。”丙说:“在甲和丁中间有一人是罪犯。”丁说:“乙说的是事实。”经过充分的调查,证实这四人中有两人说了真话,另外两人说的是假话。同学们,请你做一名公正的法官,对此案进行裁决,确认谁是罪犯?思路导航:乙和丁是盗窃犯。如果甲说的是假话,那么剩下三人中有一人说的也是假话,另外两人说的是真话。可是乙和丁两人的观点一致,所以在剩下的三人中只能是丙说了假话,乙和丁说的都是真话。即“丙是盗窃犯”。这样一来,甲说的也是对的,不是假话。这样,前后就产生了矛盾。所以甲说的不可能是假话,只能是真话。同理,剩下的三人中只能是丙说真话。乙和丁说的是假话,即丙不是罪

27、犯,乙是罪犯。又由甲所述为真话,即甲不是罪犯。再由丙所述为真话,即丁是罪犯。2、 巩固训练1.小王、小张、小李三人在一起,其中一位是工人,一位是战士,一位是大学生。现在知道:小李比战士年龄大,小王和大学生不同岁,大学生比小张年龄小。那么三人各是什么职业?2.甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?3.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。(1)车工只和电工下棋;(2)王、陈两位师傅经常与木工下棋;(3)徐师傅与电工下棋互有胜负;(4)陈师傅比钳工下得好。问:徐、王、陈、赵四

28、位师傅各从事什么工种?(7) 牛吃草牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。这类问题常用到四个基本公式,分别是:(1)草的生长速度(对应的牛头数吃的较多天数相应的牛头数吃的较少天数)(吃的较多天数吃的较少天数);(2)

29、原有草量牛头数吃的天数草的生长速度吃的天数;(3)吃的天数原有草量(牛头数草的生长速度);(4)牛头数原有草量吃的天数草的生长速度。这四个公式是解决牛吃草问题的基础。一般设每头牛每天吃草量不变,设为1,解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。1、 例题与方法指导例1.青青一牧场 青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。“廿”即二十之意。)【解说】这道诗题,是依据闻名于世界的“牛顿牛吃草问题”编写的。牛顿是英国人,他的种种事迹早已闻名

30、于世,这里不赘述。他曾写过一本书,名叫普遍的算术,“牛吃草问题”就编写在这本书中。书中的这道题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。若是21头牛,要几个星期才可以吃完?(注:牧场的草是不断生长的。)解答这一问题,首先必须注意牧场里的草是不断生长增多的,而并非一个固定不变的数值。这虽然大大地增加了解题的难度,但我们不要害怕。只要依据下面的思路,就一定会找到问题的答案。思路导航:因为27头6星期草料=(276=)162头一星期草料23头9星期草料=(239=)207头一星期草料而这一牧场6星期吃完与9星期吃完,草料数量要相差207162=45(头牛吃

31、一星期的草料)这多出的草料,便是96=3(个星期之内新长出的草料)所以,一个星期新长出的草料便是453=15(头牛吃一星期的草料)进而可知,这牧场最初的草料数量就是(2715)6=72(头牛吃一个星期的草料)现在,有21头牛来吃这牧场里的草,其中必须拿出15头牛来吃每个星期新长出来的草料,这就只剩下:21-15=6(头牛)去吃最初已经长成的草料了。所以,21头牛来吃这牧场的草料,全部吃光所需要的时间就是726=12(个星期)列成综合算式,就是:27-(239276)(96)621-(239276)(96)=27-453621-4531266=12(个星期)答:21头牛要12个星期才可以吃完。例

32、2.一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。如果有牛21头,几天能把草吃尽?摘录条件:27头 6天 原有草+6天生长草23头 9天 原有草+9天生长草21头 ?天 原有草+?天生长草解答这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为1,由条件可知,前后两次青草的问题相差为239-276=45。为什么会多出这45呢?这是第二次比第一次多的那(9-6)3天生长出来的,所以每天生长的青草为453=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。由此,我们可以把每次来吃草的牛分为两组,一组是抽出

33、的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)6=72那么:第一次吃草量276=162第二次吃草量239=207每天生长草量453=15原有草量(27-15)6=72或162-156=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么726=12(天)例3.一水库原有存水量一定,河水每天入库。5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要多少台同样的抽水机?摘录条件:5台 20天 原有水+20天入库量6台 15天 原有水+15天入库量?台 6天 原有水+6天入库量设1台1天抽水

34、量为1,第一次总量为520=100,第二次总量为615=90每天入库量(100-90)(20-15)=220天入库220=40,原有水100-40=6060+26=72726=12(台)2、 巩固训练1、 某车站在检票前若干分钟就开始排队了,每分钟来的旅客一样多,从开始检票到队伍消失(还有人在接受检票),若开5个检票口,要30分钟,开6个检票口,要20分钟。如果要在10分钟消失,要开多少个检票口?2、 画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。求第一个观众到达的时间。3、 由

35、于天气逐渐变冷,牧场上的草每天匀速减少。经过计算,牧场上的草可供20头牛吃5天,或者供16头牛吃6天,那么这片牧场上的草可供11头牛吃几天?4、 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。如果牧场上的草可供20头牛吃5天,或者供15头牛吃6天,那么可供多少头牛吃10天?3、 拓展提升1.自动扶梯以均匀的速度由上往下行驶,小明和小红要从扶梯上楼,小明每分钟走20梯级,小红每分钟走14梯级,结果小明4分钟到达楼上,小红用5分钟到达楼上,求扶梯共有多少级?2.两只蜗牛由于耐不住阳光的照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20分米,另一只只能走15分米;黑夜里往

36、下滑,两只蜗牛下滑速度相同,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。问井深是多少?3.有三块草地,面积分别是5公顷,15公顷和24公顷。草地上的草一样厚而且长得一样快。第一块草地可供10头牛吃30天;第二块草地可供28头牛吃45天。那么第三块草地可供多少头牛吃80天?4.12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?(8) 工程问题顾名思义,工程问题指的是与工程建造有关的数学问题。其实,这类题目的内容已不仅仅是工程方面的问题,也括

37、行路、水管注水等许多内容。在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率工作时间,工作时间=工作量工作效率,工作效率=工作量工作时间。工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。但在不引起误会的情况下,一般不写工作效率的单位。一、例题与方法指导例1.单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天?思路导航:以

38、全部工程量为单位1。甲队单独干需100天,甲的工作效例2.某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?思路导航:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。答:甲队干了12天。例3.单独完成某工程,甲队需10天,乙队需15天,丙队需20天。开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。问:甲队实际工作了几天?思路导航:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,

39、所以甲队实际工作了例4.一批零件,张师傅独做20时完成,王师傅独做30时完成。如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。这批零件共有多少个?思路导航:这道题可以分三步。首先求出两人合作完成需要的时间,2、 巩固训练1.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?2.甲、乙二人同时从两地出发,相向而行。走完全程甲需60分钟,乙需40分钟。出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。甲再出发后多长时间两人相遇?3.某工程甲单独干10天

40、完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?4.某工程甲队单独做需48天,乙队单独做需36天。甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。求乙队在中间单独工作的天数。3、 能力提升1.一条水渠,甲、乙两队合挖需30天完工。现在合挖12天后,剩下的乙队单独又挖了24天挖完。这条水渠由甲队单独挖需多少天?2.修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?3.蓄水池有甲、乙两个进水管,单开甲管需18时注满,单开乙管需24时注满。如果要求12时注满水池,那么甲、乙两管至少要合

41、开多长时间?4.两列火车从甲、乙两地相向而行,慢车从甲地到乙地需8时,比快车从40千米。求甲、乙两地的距离。(9) 植树问题只要我们稍加留意,都会看到在马路两旁一般都种有树木。细心观察,这些树木的间距一般都是等距离种植的。路长、间距、棵数之间存在着确定的关系,我们把这种关系叫做“植树问题”。而植树问题,一般又可分为封闭型的和不封闭型的(开放型的)。封闭型的和不封闭型的植树问题,区别在于间隔数(段数)与棵数的关系:1、不封闭型的(多为直线上),一般情况为两端植树,如下图所示,其路长、间距、棵数的关系是:但如果只在一端植树,如右图所示,这时路长、间距、棵数的关系就是:如果两端都不植树,那么棵数比一

42、端植树还要再少一棵,其路长、间距、棵数的关系就是:2、封闭型的情况(多为圆周形),如下图所示,那么:植树问题的三要素:总路线长、间距(棵距)长、棵数只要知道这三个要素中任意两个要素,就可以求出第三个植树问题的分类:直线型的植树问题封闭型植树问题特殊类型的植树问题1、 例题与方法指导例1 有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,可种植垂柳多少棵?思路导航:每隔5米栽一棵垂柳,即以两棵垂柳之间的距离5米为一段。公路的全长1000米,分成5米一段,那么里包含有10005=200段。由于公路的两端都要求种树,所以要种植的棵数比分成的段数多1,所以,可种植垂柳200+1=201棵。例2

43、某一淡水湖的周长1350米,在湖边每隔9米种柳树一株,在两株柳树中间种植2株夹枝桃,可栽柳树多少株?可栽夹枝桃多少株?两株夹枝桃之间相距多少米?思路导航:在圆周上植树时,由于可栽的株数等于分成的段数,所以,可栽柳树=13509=150株;由于两株柳树之间等距离地栽株夹枝桃,而间隔数(段数)为150,所以栽夹枝桃的株数=2150=300株;每隔9米种柳树一株,在两株夹枝桃之间等距地栽2株夹枝桃,这就变成两端都不植树的情形,即2株等距离栽在9米的直线上,不含两端,所以,每两株之间的距离=9(2+1)=3(米)。例3 一条街上,一旁每隔8米有一个广告牌,从头到尾有16个广告牌,现在要进行调整,变成每

44、12米有一个广告牌。那么除了两端的广告牌外,中间还有几个牌不需要移动?思路导航:16个广告牌,每相邻的两个广告牌的间隔为8米,则共有16-1=15 个间隔,这条街的总长度为815120(米);现在要调整为每12米一个广告牌,那么不移动的牌离端点的距离一定既是8的倍数,同时也是12的倍数;83=122=24,也就是说,每24米及其倍数处的广告牌可以不需要移动;120245,即段数为5个,但要扣除两端的2个,所以,中间不需要移动的有5-1=4个。事实上,所谓植树问题只是我们对这一种类型问题的总称,并不单指植树问题。例如,与之类似的还有爬楼(梯)问题、队列问题、敲钟问题、锯木头问题的等。所以,植树问

45、题又称上楼梯问题。2、 巩固训练1 某人要到一座高层楼的第8层办事,不巧停电,电梯停开。如果他从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?2 光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台需要多少分钟?3 下图是五个大小相同的铁环连在一起的图形,它的长度是多少?十个这样的铁环连在一起有多长?4 一个木工把一根长24米的木条锯成了3米长的小段,每锯断一次要用5分钟,共需多少分钟?3、 能力提升1. 一个街心花园如下图所示,它由四个大小相等的等边三角形组成。已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花。问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?2. 时钟4点敲4下,用12秒敲完。那么6点钟敲6下,几秒钟敲完?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论