版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、每条边都是直线段直边图形 将不规则的图形将不规则的图形“分割分割”得到得到熟悉的图形,从而求出它的面积。熟悉的图形,从而求出它的面积。通过通过“以直代曲以直代曲”、“无限逼近无限逼近”的的思想研究圆的面积。思想研究圆的面积。 在直角坐标系中,由连续曲线在直角坐标系中,由连续曲线y=f(x),直,直线线x=a、x=b及及x x轴所围成的图形叫做曲边梯形。轴所围成的图形叫做曲边梯形。曲边梯形曲边梯形:Ox y a b y=f (x)x=ax=b 直线直线x x 0 0、x x 1 1、y y 0 0及曲线及曲线y y x x2 2所所 围成的图形面积围成的图形面积S S是多少?是多少?1 1Oyx
2、Oyx2xy 能否直接对整能否直接对整个曲边梯形进行个曲边梯形进行“以直代曲以直代曲”?探究探究 误差太大误差太大! !怎样怎样才能减少误差呢?才能减少误差呢?1 1OyxOyx2xy 4121431 1OyxOyx2xy A1A2A3A381874121838543过剩近似过剩近似1 1OyxOyx2xy A1A2A381874121838543不足近似不足近似1 1OyxOyx2xy nini 1n2n1例例: :直线直线x x 0 0、x x 1 1、y y 0 0及曲线及曲线y y x x2 2所围成的图所围成的图形面积形面积S S是多少?是多少?第一步:分割第一步:分割在区间在区间0
3、0,11上等间隔地插入上等间隔地插入n-1n-1个点,将它个点,将它等分成等分成n个小区间:个小区间:,1 ,1 ,2,1,1, 0nnnnnininnn 过上述过上述n-1n-1个分点作个分点作x x轴的垂线,从轴的垂线,从而得到而得到n个小曲边梯形。面积记为个小曲边梯形。面积记为.S,S,S,Sni21 1 1OyxOyx2xy nini 1n2n1例例: :直线直线x x 0 0、x x 1 1、y y 0 0及曲线及曲线y y x x2 2所围成的图所围成的图形面积形面积S S是多少?是多少?第二步:近似代替:第二步:近似代替:,n1)n1i(n1)n1i(fS2i,n1)0(n1)0
4、(fS21,n1)n1(n1)n1(fS22,n1)n2(n1)n2(fS23,n1)n1n(n1)n1n(fS2n第三步:求和第三步:求和nini 1n2n11 1Oyxyx2xy 公式公式6)12n(1)n-(n)1-(n21222 nninnifnini1)1(1)1(21122223) 1(2101nnnnnnnnn1)1(1)1(1)0(222nS公式公式) 1n(210n1S22223 n232336121316326) 12n(n) 1n(1nnnnnnn6)12n(1)n-(n)1-(n21222 nini 1n2n11 1Oyxyx2xy 2612131nnSn例例: :直线
5、直线x x 0 0、x x 1 1、y y 0 0及曲线及曲线y y x x2 2所围成的图所围成的图形面积形面积S S是多少?是多少?nini 1n2n11 1Oyxyx2xy nS31S31)612131(limn2所以时,当分割无限变细,即nnSSSnn第四步:取极限第四步:取极限例例: :直线直线x x 0 0、x x 1 1、y y 0 0及曲线及曲线y y x x2 2所围成的图所围成的图形面积形面积S S是多少?是多少?nini 1n2n11 1Oyxyx2xy .31梯形的面积是即所求的曲边 1 1、类比练习:、类比练习:以区间以区间 右端点对应右端点对应的函数值为矩形的高进行
6、近似代替,求曲边的函数值为矩形的高进行近似代替,求曲边梯形的面积梯形的面积S S。看看这个值还是。看看这个值还是 吗?吗?6)12n(1)n(nn21222 形成方法,学以致用形成方法,学以致用31nini 1n2n11 1OyxOyx2xy ,1nini 解:解:第一步:分割第一步:分割第二步:近似代替:第二步:近似代替:,n1)ni(n1)ni(fS2i 在区间在区间00,11上等间隔地插入上等间隔地插入n-1n-1个点,将它个点,将它 等分成等分成n个小区间:个小区间:,1 ,1 ,2,1,1, 0nnnnnininnn 过上述过上述n-1n-1个分点作个分点作x x轴的垂线,从而得到轴
7、的垂线,从而得到n个小曲边个小曲边梯形。面积记为梯形。面积记为.S,S,S,Sni21 第三步:求和第三步:求和3222n1i2nn21 n1)ni(S n232336121316326)12n)(1n(1nnnnnnnn31)612131(lim2nnSn第四步:取极限第四步:取极限22612131nnS216121-31nnS31)612131(limlim21nnSnn31)612131(limlim22nnSnn取极限取极限21SS 不足近似不足近似过剩近似过剩近似思考:思考:能求出曲边梯形的面能求出曲边梯形的面积积S S的值吗?这个值还是的值吗?这个值还是 吗?吗?1,iiinn(
8、)if311 1OyxOyx2xy inini 1niffnifi)()1(231sss31limlimlim231SSSSnnn2 2、计算、计算(1 1)由直线)由直线 x x 0 0,x x 2 2,y y 0 0与曲线与曲线y y x x2 2所所 围成的曲边梯形的面积。围成的曲边梯形的面积。形成方法,学以致用形成方法,学以致用(2 2)由直线)由直线 x x - -1 1,x=1,yx=1,y 0 0与曲线与曲线 y y - -x x2 2+1+1所围成的曲边梯形的面积。所围成的曲边梯形的面积。小小 结结: 2.2.解决问题的过程中,用到了哪些数学解决问题的过程中,用到了哪些数学思想
9、?思想? 1.1.经历了探求特殊的曲边梯形面积的经历了探求特殊的曲边梯形面积的过程,我们该如何计算一般的曲边梯形过程,我们该如何计算一般的曲边梯形的面积?的面积?分割分割近似代替近似代替求和求和取极限取极限 “以直代曲以直代曲” “” “无限逼近无限逼近”3.3.通过本节课的学习,你有什么收获?通过本节课的学习,你有什么收获?2 2、求由直线、求由直线x x 1 1、x x 3 3、 y y 1+1+x x2 2及及x x轴所围轴所围成的曲边梯形的面积。成的曲边梯形的面积。作业布置作业布置: :直直线线x x 0 0、x x 1 1、y y 0 0及曲线及曲线y y x x2 2所围成的图形所围成的图形面积面积S S,看,看这个值还是三分之一这个值还是三分之一 吗?吗?,1nini 2 2、求由直线、求由直线x x 1 1、x x 3 3、 y y 1+ 1+ x x2 2及及x x轴所围轴所围成的曲边梯形的面积。成的曲边梯形的面积。作业布置作业布置: :直直线线x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国计量大学《超声技术概论》2023-2024学年第一学期期末试卷
- 中国地质大学(武汉)《智能终端软件开发》2023-2024学年第一学期期末试卷
- 2025年中国录播系统行业市场运行态势、市场规模及发展趋势研究报告
- 2024年广告发布合同样本
- 2024年文化艺术演出承包合同3篇
- 2024年度汽油销售区域保护与市场拓展合作合同3篇
- 2024年房产结算合同3篇
- 2024年度企业车辆交易合同范本
- 2024年度汽车托运平板车租赁及售后服务满意度提升合同3篇
- 2024年度木工行业人才培养劳务分包合同3篇
- 美国史智慧树知到期末考试答案章节答案2024年东北师范大学
- 《短视频拍摄与制作》课件-3短视频中期拍摄
- 重庆市课程改革课程设置及实施指导意见
- 浅谈热贡霍念藏地区的五月嘛尼法会
- 水资源管理工作程序PPT课件
- 上海石油天然气管道保护范围内特定施工作业申请
- 民航机场不停航施工管理及技术措施
- 施耐德断路器产品参数样本
- 毕业设计(论文)风力机偏航系统的设计与控制
- (完整版)高考英语作文练习纸(标准答题卡)
- 抗压能力测评
评论
0/150
提交评论