双曲线的基本性质详解_第1页
双曲线的基本性质详解_第2页
双曲线的基本性质详解_第3页
双曲线的基本性质详解_第4页
双曲线的基本性质详解_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于双曲线的基本性质详解现在学习的是第一页,共20页222bac | |MF1|- -|MF2| | =2a( 2aa0e 1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:)定义:(2)e e的范围的范围:(3)e e的含义:的含义:11)(2222eacaacab也增大增大且时,当abeabe,), 0(), 1 (的夹角增大增大时,渐近线与实轴e现在学习的是第六页,共20页ace 222bac二四个参数中,知二可求、在ecba(4)等轴双曲线的离心率等轴双曲线的离心率e= ?2( 5 )的双曲线是等轴双曲线离心率2e现在学习的是第七页,共20页xyo的简单几何性质二、导出双曲线

2、)0, 0( 12222babxay-aab-b(1)范围)范围:ayay,(2)对称性)对称性:关于关于x轴、轴、y轴、原点都对称轴、原点都对称(3)顶点)顶点: (0,-a)、(0,a)(4)渐近线)渐近线:xbay(5)离心率)离心率:ace 现在学习的是第八页,共20页小小 结结ax或ax ay ay或)0 ,( a), 0(axaby xbay ace )(222bac其中关于关于坐标坐标轴和轴和原点原点都对都对称称性性质质双曲线双曲线) 0, 0(12222babyax) 0, 0(12222babxay范围范围对称对称 性性 顶点顶点 渐近渐近 线线离心离心 率率图象图象现在学习

3、的是第九页,共20页例例1 :求双曲线求双曲线的实半轴长的实半轴长,虚半轴长虚半轴长,焦点坐标焦点坐标,离心率离心率.渐近线方程。渐近线方程。解:把方程化为标准方程解:把方程化为标准方程可得可得:实半轴长实半轴长a=4虚半轴长虚半轴长b=3半焦距半焦距c=焦点坐标是焦点坐标是(0,-5),(0,5)离心率离心率:渐近线方程渐近线方程:14416922 xy1342222 xy53422 45 acexy34例题讲解例题讲解 现在学习的是第十页,共20页12222byax的方程为解:依题意可设双曲线8162aa,即10,45cace又3681022222acb1366422yx双曲线的方程为xy

4、43渐近线方程为)0 ,10(),0 ,10(21FF 焦点.4516线和焦点坐标程,并且求出它的渐近出双曲线的方轴上,中心在原点,写焦点在,离心率离是已知双曲线顶点间的距xe 例例2现在学习的是第十一页,共20页1、若双曲线的渐近线方程为、若双曲线的渐近线方程为 则双曲则双曲线的离心率为线的离心率为 。2、若双曲线的离心率为、若双曲线的离心率为2,则两条渐近线的交角,则两条渐近线的交角为为 。4,3yx 课堂练习课堂练习现在学习的是第十二页,共20页 与双曲线与双曲线221916xy 有共同渐近线,且过点有共同渐近线,且过点( 3,2 3) ; 与双曲线与双曲线221164xy有公共焦点,且

5、过点有公共焦点,且过点(3 2,2) 例例3 :求下列双曲线的标准方程:求下列双曲线的标准方程:例题讲解例题讲解 现在学习的是第十三页,共20页法二:法二:巧设方程巧设方程,运用待定系数法运用待定系数法.设双曲线方程为设双曲线方程为 ,22(0)916xy 22( 3)(2 3)916 14 221944双曲线的方程为xy现在学习的是第十四页,共20页法二:法二:设双曲线方程为设双曲线方程为221164xykk 16040kk 且且221128xy 双曲线方程为双曲线方程为22(3 2)21164kk ,解之得解之得k=4,222221,2012(30)xymmm或设求得舍去现在学习的是第十五

6、页,共20页1、“共渐近线共渐近线”的双曲线的应用的双曲线的应用222222221(0)xyabxyab 与共渐近线的双曲线系方程为, 为参数 ,0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;0表示焦点在表示焦点在y轴上的双曲线。轴上的双曲线。2222222222222211,1.xyxyabmmcxymcm2、与共焦点的椭圆系方程是双曲线系方程是现在学习的是第十六页,共20页2231492454xye、求与椭圆有公共焦点,且离心率的双曲线方程。. 1916, 91625, 4455, 1505. 5,252449222222222yxbaaayaxcc可得求得然后由设共焦点的双曲线为)

7、,焦点为(得解:由1, 1122222222222222mcymxcmymxbyax双曲线系方程是共焦点的椭圆系方程是注:与现在学习的是第十七页,共20页 4. 求与椭圆求与椭圆xy221681有共同焦点,渐近线方程为有共同焦点,渐近线方程为xy30的双曲线方程。的双曲线方程。 解:解:椭圆的焦点在椭圆的焦点在x轴上,且坐标为轴上,且坐标为),(,022)022(21FF 双曲线的焦点在 轴上,且xc2 2双曲线的渐近线方程为双曲线的渐近线方程为xy33 bacabab33822222,而, 解出解出2622ba, 双曲线方程为xy22621 现在学习的是第十八页,共20页12 byax222( a b 0)12222 byax( a 0 b0) 222 ba(a 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论