版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北师大版七年级数学上册各章知识点易错点总结第一章第一节易误点1不能从实物中抽象出几何图形由一个物体的特征可以确定物体的形状、大小;从而得到几何体;立体图形 是从实物中抽象出来的.例1在如图1-1-9所示物体中;哪些物体的形状是柱体?(1)(3)图 1-1-9解:(1) (2)是柱体.注意:柱体的共同特征是:上下底面平行且形状相同、大小相等.易误点2面动成体时;对情况考虑不全;导致漏解把一个平面图形绕一条直线旋转即可得到立体图形;即面动成体;判断由平 面图形旋转得到的立体图形的形状时;一要靠想象;二要靠动手实践 .例2直角三角形绕其一边所在直线旋转一周后所形成的几何体是什么几何体?解: 如图1-
2、1-10所示;有两种情况:一是圆锥;一是底面重合的两圆锥扣在一起的几 何体.iB(2)图 1-1-10注意:解本题时;常忽略绕斜边所在直线旋转的情况 .因此;解决此类问题时;首先要明确绕哪条边所在直线旋转.第二节易误点1不能正确判断平面图形折叠成的立体图形的形状判断平面图形折叠成的立体图形的形状时;不能只凭想象;最好动手折叠;折叠时 注意:折成的立体图形的形状;每个平面的位置 .例1把如图1-2-12所示图形折叠起来;它会变成右边哪个正方体?图 1-2-12AC解:B.注意:解决此类问题时要熟悉正方体的各类表面展开图;还要动手实际操作;探索规律;及时归纳.易误点2不能正确判断正方体的表面展开图
3、了解正方体的几种表面展开图;通过动手操作确定正方体的表面展开图;积 累活动经验;培养空间观念.例2下列图形中可为正方体的表面展开图的是ABCD解:D.第三节易误点不能准确判断截面的形状判断截面的形状时要综合考虑以下几方面:截面的位置;截面与其它面的关 系;截面与哪些面相交.例一个正方体的截面不可能是A三角形B四边形C五边形D七边形解:用平面去截几何体所得的截面就是这个平面与几何体的面相交的线所围成的图形正方体只有6个面;所以截面最多有6条边;不会出现七边形.选D.注意:判断截面的形状时;先找出平面与几何体各面相交而成的线;再判断截面形状 第四节 易误点1不能正确判断看到物体的形状判断从三个方向
4、看物体的形状时;要观察物体想象图形的形状;注意画从上面看圆锥的形状时不要漏掉顶点(圆心).例1画出从上面看如图1-4-24所示的圆锥的形状图.图 1-4-2521 / 23易误点2根据从三个方向看到的形状图描述物体的形状时容易出错根据从三个方向看到的形状图描述由小正方体组成的物体的形状时;以从上 面看到的形状图为基础;结合从正面和左面看到的形状图;得到每一行、每 一列的小正方形个数;从而得到立体图形的形状例2如图1-4-26所示;是从三个方向看到的由一些相同的小正方体构成的立体图形的形从上面看图 1-4-26A.4B.5C.6D.7解:D.注意:解决此类问题的关键是从三个方向看到的形状图观察出
5、小正方体的行数和列数;从而得出小正方体的个数第二章第一节易误点 认为带“十”的数是正数;带“-”的数是负数正数前面的“ +”可有可无;但负数前面一定带“-”.例 下面各数中哪些是正数?1+2012, -3.2; 2,10.58,-9,+111解:正数有+2012,2,10.58,+11.第二节易误点画数轴时;容易缺少某个要素数轴必须具备三个要素:原点、正方向和单位长度.在画数轴时易出现的错误有:(1)缺少正方向;(2)缺少原点;(3)单位长度不统一.例 如图2-2-10所示;数轴有几条?分别是哪几条?I> J1, L 1.0 f1 201 号 -10 1(1)(2)(3)(4)解:数轴有
6、一条;是(3).注意:(1)缺少单位长度;(2)缺少原点;(4)缺少正方向;都是错误的.第三节易误点 1 对绝对值意义理解不透;认为只有正数的绝对值是它本身正数和 0 的绝对值是它本身;负数的绝对值是它的相反数.例 1 如果有一个有理数的绝对值是它本身;则这个数是()A.负数B.负数或0C正数或0 D.正数解:正数和0 的绝对值是它本身;故选C.注意:解此类问题时容易漏掉0.易误点2 已知一个数的绝对值求这个数的时;容易漏掉其中一个互为相反数的两个数的绝对值相等;是同一个数.例 2 绝对值等于8 的数是()解:因为 |8|=8 ; |-8|=- ( -8) =8;所以绝对值等于8的数是
7、7; 8.注意:绝对值等于8 的数是指到原点的距离为8 的点表示的数;因此这样的数在原点左右两侧都存在;解此类问题时容易只写8 或 -8.第四节易误点 1 在进行有理数加法运算时;容易忽略符号在进行有理数加法运算时;可分为两步:1.确定符号;2.进行运算.例 1 计算:(-4.5) +0.5解:(-4.5) +0.5=-( 4.5-0.5) =-4注意:异号两数相加;取绝对值较大的数的符号;此类题容易带错符号.易误点2 认为两数之和一定大于每一个加数两正数相加时;两数之和一定大于每一个加数;但是;两有理数相加时;两数之和不一定大于每一个加数.例2两有理数相加时;两数之和一定大于每一个加数吗?解
8、:不一定.如一正数和一负数相加时;和小于此正数;一有理数和0相力叩寸;和等于此有理数;两负数相加时;和小于每一个加数.注意:“两数之和一定大于每一个加数”只满足于正数相加.第五节易误点将有理数减法转化为加法时;符号易错.将有理数减法转化为加法的法则是:减去一个数;等于加上这个数的相反数.一 、一211例计算:(+6 g)+ (一而)-1152112112解:原式二(+6 g ) + (10 ) + (11g ) = (+6 5 ) +一(而 +11g ) = (+6 g ) +,3439(T1而)=(+6 石)+ L11而)=4而注意:解此类题时;容易认为一111是减去一111 ;等于加上+1
9、11 .其实是加上一111 .5555第六节易误点1将有理数加减混合运算统一成加法运算时;符号容易出错进行有理数加减混合运算时;应先用有理数的减法法则把加减法统一为加法;然后再写成省略加号、括号的和的形式.1241例 1 计算:2 + ( 3 ( 5) + ( 2)124112 41 42 2解:原式=2+ (3) +5+ (-2) =2-3 + 5-2 = 5-3 = 1544注意:本题在写成和的形式的过程中;易把一(一 5)误以为一5.易误点2使用运算律交换位置时;漏移符号进行有理数加减混合运算时;为简化计算过程;常用到加法交换律和结合律在交换位置时;要连同加数的符号一起交换例2计算:11
10、31(1-) ( 57) ( 1-) 4222027201 133g 7J 3-13 g 73原式=1 571421 157 420 15解:2202202220201010注意:在本题;第一项和第三项结合时;容易误写成11(1-) 122;没有考虑(15前的负号.第七节易误点1多个有理数相乘时;积的符号容易出错在进行有理数乘法运算时;积的符号是由负因数的个数决定的/ 3斗的(5) (-) ( 2)例1计算:103右(52)2解:原式 10注意:本题有3个负因数;因此积的符号为“一”.易误点2运用乘法对加法的分配律时;容易漏乘“一”1 1 1“()(48)例2计算:3 4 6 V ) 111片
11、原式二(-48)(-48)-(-48) 16 12 84解:346注意:本题用(-48)去乘括号内的各项时;不要漏掉各项的符号第八节易误点1连除违背运算顺序当两个以上的数连除时;应该按照从左到右的顺序依次进行一 金12 ( 5) 5例1计算:335 13 1解:原式=5 1 3 = 13 5 5 55注:本题容易先算(5) 3=( 5)5=3导致出错.易误点2进行有理数除法运算时;误用乘法运算律进行有理数除法运算;特别是除数是几个数的和的形式时;容易先用被除数 除以括号里的各项;然后相加减15 7 1()()例2计算: 3612 9 3解:原式=(125115281212513636)(363
12、636)( 36)( 36)3625注意:解决此类问题时;应该先算括号里的;再算括号外的第九节易误点1进行分数乘方运算时;容易出错分数乘方时;分子的乘方为分子;分母的乘方为分母.底数是负数时;要根据乘方的次数决定符号计算:(3)327125. 一 333解:原式二(5)( 5)( -)注意:记得带上符号.易误点2对哥的意义理解不透而带错符号在进行哥的有关运算时;区分(a)n与an (a为非0有理数);前者是n个(a) 相乘;后者是an的相反数.c ,、2,、3例2排列顺序:22; ( 1) ; ( 1)解:224 ; ( 1)2 1; ( 1)3 1;所以 22( 1)3( 1)2注意:本题容
13、易将22误以为2个(2)相乘.第十节易误点1把用科学计数法表示的数还原为原数时出错还原时误以为10的几次方;后面就有几个 0;或位数不够时漏补0.应该是n 是几;就把小数点向右移几位.例1把用科学计数法表示的数6.03 108还原为原数解:6.03 108 603000000注意:本题容易写成60300000000.第十一节易误点进行有理数混合运算时;运算顺序容易出错在进行有理数混合运算时;要按照正确的运算顺序;即先算乘方;再算乘除;最后算加减.有括号的先算括号里的;同级运算;按照从左到右的顺序进行计算、一 91m 计算:-32 60 4 ()例4517,一 一,、115解:原式=-9+15
14、(-)9 4424 ()注意:本题容易出现两个错误;1:将32前的符号漏掉;2:先算4第三章第一节 易误点不能正确用字母表示数量关系利用字母表示数量关系时;要先从特殊情况中找出规律;再用含有字母的式子表不出规律.例 如图3-1-2所示;各个图是由若干盆花组成的形如三角形的图案;每条边(包括两个端点)有n(n 1)盆花;每个图案花盆的总数是 S;按照此规律推断S与n的关系式n=2,s=3n=3,s=6n=4,s=9图 3-1-2答:S=3n-3 注意:在用字母表示图形的排列规律时;要先从已知的图形中发现规律;然后推广到一般情况;写出关系式.第二节 易误点1列代数式时出错列代数式的关键是审清题意;
15、明确运算顺序.例1用代数式表示:a与b的2倍的和除以c所得的结果.a 2b解:c易误点2求代数式的值时;如果代入的数值是负数时;容易漏掉括号求代数式的值时;如果代入的数值是负数时;此负数应该用括号括起来.例 2 当 a=4,b=2,c= -1 时;求 a-bc 的值.解:当 a=4,b=2,c= -1 时;a-bc=4 2 ( 1) 4 2 6第三节易误点1判断单项式的系数和次数时出错单项式的系数是单项式中的数字因数;不要漏掉符号;单项式的次数是单项式 中所有字母的指数和.例1指出下列单项式的系数和次数.1 x2y; 2 35a2b 25 2,解:1 x y的系数是;次数是3; 23ab的系数
16、是35 ;次数是3.注意(1) 是数字而非字母;(2) 35是数字;故计算次数时不要算上 5.易误点2对多项式的项和次数理解不透而出错多项式的项是多项式中的每个单项式;多项式的次数是多项式中次数最高的单项式的次数.3x2例2对于多项式2xy2 1x 52;下列说法正确的是()A.是六次四项式B.最高次项的次数是21C.一次项是2D.常数项是A _ 3 3 3x2 2xy2 解:多项式1x 523x2, 2xy2, 1x,5- 2由2 这4项组成;其中2xy的次数最局;是3;故此多项式是三次四项式;它的最高次项的系数是2;常数项是5.注意确定每项的系数时一定记得带上它前面的符号第四节易误点1判断
17、同类项时出错判断同类项时要注意两点:1.所含字母相同;2.相同字母的指数也相同.例1下列单项式中是同类项的有?2 一 22 一 2(1)12xy 和-5y x;(2)12xy 和-5x y解:(1)是同类项;(2)不是同类项.注意:(1)中字母顺序虽然不同;但所含字母相同;相同字母的指数也相同;所以是 同类项.易误点2括号前是"";去括号时未改变符号括号前是"";去括号时各项的符号都要改变例 2 计算:(2x2 1 3x) 4(x x2 1)解:原式=2x2 1 3x 4x 4x2 4 = 6x2 x 5第五节易误点所找规律不满足题意解决探索规律的问题的
18、一般方法是先从已知中发现规律;然后再用规律解决问 题.找出的规律应能够反映问题的全部特征.例观察下列各式:(1)2 2,(2)2 4 6,(3)2 4 6 12,(4)2 4 6 8 20,(5)2 4 6 8+10 30, 根据你发现的规律;写出第n个式子.解:2 4 6 8+2n n(n 1)注意:本题易写成2n(n 1).第四章第一节易误点 混淆直线、射线、线段用两个大写字母表示线段和直线时;字母无先后顺序;用两个大写字母表示射线 时;表示端点的字母写在前面;只有端点相同;方向也相同的射线才是同一条 射线.例 如图4-1-16所示;下列几何语句错误的是()A.直线AB与直线BA是同一条直
19、线上i-B.射线OA与射线OB是同一条射线° A BC射线OA与射线AB是同一条射线图4-1-16D.线段AB与线段BA是同一条线段解:C.注意:不要误以为只要端点相同的射线就是同一条射线.第二节 易误点1理解不透“两点间的距离”两点间的距离;即两点之间线段的长度.距离是一个数值;不是线段本身.例1下列说法正确的是:(1) A; B两点间的距离是线段 AB; (2) A; B两点间的距离 是线段AB的长度;(3) A; B两点间的距离为100cm.A. (1) (2)B.(3)C. (1) (3)D. (2)解:B.易误点2图形不确定时求线段的长度容易漏解例2已知线段AB=3cm在直
20、线AB上的一条线段BC=1cm,D是线段AC的中点;求CD的长度.解:AB CD 3 12(cm)(1)当C在线段AB的延长线上时;CD= 22AB CD 3 1 “ 、1(cm)(2)当C在线段AB上时;CD= 22综上所述;CD的长度为2cm或1cm.第三节易误点角的表示方法同一顶点处有多个角时;不能用一个大写字母表示角例 如图4-3-15所示;图中有哪几个角?解:有 / AOC/AOB/BOC.图 4-3-15第四节易误点对角的平分线的概念理解不透1例 若/ BOC=2/AOB;则OC是否为/ AOB的角平分线?(1)(2)图 4-4-15OC是/解:不一定;可能有两种情况(如图 4-4
21、-15所示);当OC在/AOB的内部时;AOB的角平分线(如图4-4-15 (2)所示)第五节 易误点 对正多边形的概念理解不透而出错各边相等;各角也相等的多边形是正多边形.往往忽略各角也相等这个条件例 一个四边形的四条边都相等;该四边形是正四边形吗?解:不一定.如图4-5-17所示;四条边都相等;但各角不相等的四边形不是正四边形图 4-5-17第五章第一节易误点 错用等式的基本性质将方程变形运用等式的基本性质时;必须使等式两边同时乘同一个数(或除以同一个不是0的数);所得的结果才是等式.13x 例解万程:31x 解:方程两边同时除以3;得 9.第二节易误点 解一元一次方程的基本步骤是:去分母
22、、去括号、移项、合并同类项、系数化为1.去分母时;方程两边同乘各个分母的最小公倍数;不要漏乘不含分母的项;同时要把分子作为整体加上括号;同时;移项不要忘变号3x 2 八 x 6 一2 2 2 例解万程:55解:去分母;得3x 2 10 x 6.移项;得3x x 6 2 10.合并同类项;得2x 2.系数化为1 ;得 x 1 .注意去分母时;不含分母的项2不要漏乘5.第三节易误点列方程时单位不统 例 在一个底面直径为0.2m的圆柱形水桶里盛水;把936g的钢球全部浸没在水中;若取出钢球;则水面下降了多少厘米?(1cm3钢质量为7.8g ;取34 ;结果精确到0.01cm )解:设水面下降了 x厘
23、米;根据题意;得202)2?x9367.8解方程;得x 0.38所以水面下降了约0.38厘米.注意列方程时m化成cm.第四节易误点误解销售问题中的有关概念和而咨售价-进价.nno/禾润率=工T元 I。明确商品的“利润=售价一进价;进伍”;是解决销售问题的关键;不要误用公式而出错.例:某商品售价为a元;利润20%;则进彳介为元.a答案:1 20%注意:本题不要误以为分母是 20%第五节易误点 混淆体重有关量的和、差、倍、分关系例:某车间有28名工人;生产某种螺栓和螺帽;一个螺栓的两头各套上一个螺帽配成一套;每人每天平均生产螺栓12个或螺帽18个;问:多少名工人生产螺栓;多少 名工人生产螺帽;才能
24、使一天所生产的螺栓和螺帽刚好配套?解:设x名工人生产螺栓;则有(28-x)名工人生产螺帽.根据题意;得12x 2 18(28 x)解得 x=12; ,28-x=16因此;12名工人生产螺栓;16名工人生产螺帽第六节易误点列方程式单位不统一当方程中的量较多;且单位不统一时;找等量关系列方程式时;要将单位统一;否则等式不成立例 甲、乙两人分别从相距1500km的A; B两地出发;相向而行;3min后相遇;已知乙的速度是5m/s;求甲的速度.10 x 解:设甲的速度是x m/s;根据题意;得180x 180 5 1500.解得3.10因此;甲的速度是x m/s.注意:题目中有两个不同的单位;一定要将
25、单位统一.第六章 数据的收集与整理第一节易误点 收集数据的方式不合理收集数据的方式有多种;采用哪种方式收集数据是由调查问题及调查对象来确定的.要根据实际情况来选择;选择的方式要考虑方便实用;否则视为不合理例 某电视台为了在某市调查节目的收视率;每个看电视的人都要被问到吗?你认为采取哪种方式收集数据较好?分析:在这种情况下;被调查的对象太多;不可能采取试验等方式;否则费事费力;因此可以在有代表性的地方展开调查.解:不一定都要被问到;可在有代表性的地方采用问卷调查.第二节易误点1不理解所要调查的对象不理解“考察对象”的含义;导致对问题中的总体、个体、样本判断有误 .例1要了解一批炮弹的杀伤半径;从中抽取了 5发炮弹测量了其杀伤半径;在该问题中总体、个体、样本各指什么?解:总体:这批炮弹杀伤半径的全体;个体:每个炮弹的杀伤半径;样本: 5发炮弹的 杀伤半径.注意:“考察对象”是指表示事物某一特征的数据;而不是事物本身;本题中要考察的 是炮弹的杀伤半径;而不是炮弹.易误点2在抽样调查时;选取的样本不合理在选取样本时;由于对样本不理解;选出的样本不具有代表性而出现错误.例2某市教育局要调查全市各个初中九年级学生的学习情况;让每个学校选出20名学生参加学习竞赛.这种做法是否合理?解:这种做法不合理;因为选取的 20名学生不能代表各初中九年级学生的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴工学院《通信电子线路》2022-2023学年期末试卷
- DB5115-T 129-2024《油樟优树选择技术规程》
- DB 3705-T 14-2024《城市大脑场景应用开发规范》
- 噢易教育桌面云解决方案(100点)
- 劳动防护用品知识培训考核试卷
- 电力系统的电量校准与检定考核试卷
- 危险品仓储易燃液体储存措施考核试卷
- 摩托车电子燃油喷射系统的原理与应用考核试卷
- 城市轨道交通的社会文化影响与区域发展考核试卷
- 废弃资源综合利用的废荧光灯处理与资源化利用考核试卷
- 教师教学述评管理制度
- 建立网络安全管理责任制明确安全工作职责和责任
- 安徽省工伤职停工留薪分类目录
- 30题南昌轨道交通集团供电技术类岗位岗位常见面试问题含HR问题考察点及参考回答
- 农贸市场摊位招商方案
- 医疗设备采购 投标技术方案 (技术方案)
- 《化学课程思政元素》
- 2024继续教育《医学科研诚信与医学了研究伦理》答案
- 门诊品管圈课件:提高门诊治疗患者健康教育的满意度
- 职业生涯报告六篇
- 作业本印制服务投标方案(技术标)
评论
0/150
提交评论