版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、山东省济南市历下区九年级(上)期末测试数学试卷一、选择题(本大题共15个小题,每小题3分,共45分在每小题给出的四个选项中,只有一项是符合题目要求的)1圆有()条对称轴A0条B1条C2条D无数条2抛物线y=(x1)2+2的顶点坐标是()A(1,2)B(1,2)C(1,2)D(1,2)3如图所示正三棱柱的主视图是()ABCD4圆O的半径为6,线段OP的长度为8,则点P与圆的位置关系是()A点在圆上B点在圆外C点在圆内D无法确定5如图,ABC的三个顶点都在正方形网格的格点上,则tanA的值为()ABCD6要将抛物线y=(x+1)2+2平移后得到抛物线y=x2,下列平移方法正确的是()A向左平移1个
2、单位,再向上平移2个单位B向左平移1个单位,再向下平移2个单位C向右平移1个单位,再向上平移2个单位D向右平移1个单位,再向下平移2个单位7如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A逐渐变短B逐渐变长C先变短后变长D先变长后变短8如图,菱形ABCD的周长为16,ABC=120°,则DB的长为()AB4CD29已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()ABCD10如图,已知直线abc,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,AE=10,BD=3,则DF的值是()A4B4.5C5D5.511已
3、知抛物线y=3(x2)2+k(k为常数),A(3,y1),B(3,y2),C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()Ay1y2y3By2y1y3Cy2y3y1Dy3y2y112如图,二次函数y1=ax2+bx+c与一次函数y2=kx+b的交点A,B的坐标分别为(1,3),(6,1),当y1y2时,x的取值范围是()A1x6Bx1或x6C3x1Dx3或x113二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()ABCD14如图,在x轴的上方,直角BOA绕原点O按顺时针方向旋转,若BOA的两边分别与函数y=、y=的
4、图象交于B、A两点,则OAB的大小的变化趋势为()A逐渐变小B逐渐变大C时大时小D保持不变15抛物线y=ax2+bx+c交x轴于A(1,0),B(3,0),交y轴的负半轴于C,顶点为D下列结论:2a+b=0;2c3b;当m1时,a+bam2+bm;当ABD是等腰直角三角形时,则a=;当ABC是等腰三角形时,a的值有3个其中正确的有()ABCD二、填空题(本大题共6个小题,每小题3分,共18分把答案填在题中横线上)16已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是17在ABC中,若AB=AC=5,BC=8,则sinB=18如图,点O是O的圆心,点A、B、C
5、在O上,AOB=42°,则ACB的度数是°19如图,利用标杆BE测量建筑物DC的高度,如果标杆BE长为1.5米,测得AB=2米,BC=8米,且点A、E、D在一条直线上,则楼高CD是米20已知二次函数y=x2+2x+m的部分图象如图所示,则关于x的一元二次方程x2+2x+m=0的解为21如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,An,将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:抛物线的顶点M1,M2,M3,Mn,都在直线L:y=x上;抛物线依次经过点A1,A2,A3An,则M2016顶点的坐
6、标为三、解答题(本大题共7个小题,共57分解答应写出文字说明、证明过程或演算步骤)22(1)计算: sin45°+3tan30°;(2)解方程:x26x+4=023有四张背面相同的纸牌A、B、C、D正面分别画有四个不同的几何图形(如图所示),小亮将这四张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张(1)用树状图或列表法表示两次摸牌的所有可能的结果(纸牌用A、B、C、D表示);(2)求摸出的两次牌正面图形都是中心对称图形的概率24(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,BOD=160°,求BCD
7、的度数25放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米(风筝线AD,BD均为线段,1.414,1.732,最后结果精确到1米)26教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10,加热到100,停止加热,水温开始下降,此时水温()与开机后用时(min)成反比例关系直至
8、水温降至20,饮水机关机饮水机关机后即刻自动开机,重复上述自动程序如图为在水温为20时,接通电源后,水温y()和时间x(min)的关系(1)求饮水机接通电源到下一次开机的间隔时间(2)在(1)中的时间段内,要想喝到超过50的水,有多长时间?27一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)50607080销售量y(千克)100908070(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价
9、为多少元时,批发商获得的利润w(元)最大此时的最大利润为多少元28如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C抛物线y=ax2+bx+c的对称轴是x=且经过A、C两点,与x轴的另一交点为点B(1)直接写出点B的坐标;求抛物线解析式(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC求PAC的面积的最大值,并求出此时点P的坐标(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似?若存在,求出点M的坐标;若不存在,请说明理由山东省济南市历下区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题
10、,每小题3分,共45分在每小题给出的四个选项中,只有一项是符合题目要求的)1圆有()条对称轴A0条B1条C2条D无数条【考点】圆的认识【分析】紧扣圆的对称轴的特点,即可解决问题【解答】解:圆的对称轴是经过圆心的直线,经过一点的直线有无数条,所以,圆有无数条对称轴故选:D2抛物线y=(x1)2+2的顶点坐标是()A(1,2)B(1,2)C(1,2)D(1,2)【考点】二次函数的性质【分析】直接利用顶点式的特点可写出顶点坐标【解答】解:顶点式y=a(xh)2+k,顶点坐标是(h,k),抛物线y=(x1)2+2的顶点坐标是(1,2)故选D3如图所示正三棱柱的主视图是()ABCD【考点】简单几何体的三
11、视图【分析】找到从正面看所得到的图形即可【解答】解:如图所示正三棱柱的主视图是平行排列的两个矩形,故选B4圆O的半径为6,线段OP的长度为8,则点P与圆的位置关系是()A点在圆上B点在圆外C点在圆内D无法确定【考点】点与圆的位置关系【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,若点到圆心的距离为d,圆的半径r,则dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内【解答】解:OP=8,r=6,则OPr,点P在圆外故选B5如图,ABC的三个顶点都在正方形网格的格点上,则tanA的值为()ABCD【考点】锐角三角函数的定义【分析】在正方形网格中构造一个A为锐角的直角
12、三角形,然后利用正切的定义求解【解答】解:如图,在RtADB中,tanA=故选B6要将抛物线y=(x+1)2+2平移后得到抛物线y=x2,下列平移方法正确的是()A向左平移1个单位,再向上平移2个单位B向左平移1个单位,再向下平移2个单位C向右平移1个单位,再向上平移2个单位D向右平移1个单位,再向下平移2个单位【考点】二次函数图象与几何变换【分析】根据二次函数图象的平移规律进行解答【解答】解:y=x2=(x+11)2+22,抛物线y=x2可由y=(x+1)2+2向右平移1个单位,向下平移2个单位得出;故选D7如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A逐渐
13、变短B逐渐变长C先变短后变长D先变长后变短【考点】中心投影【分析】根据中心投影的特点:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长进行判断即可【解答】解:因为小亮由A处走到B处这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长故选C8如图,菱形ABCD的周长为16,ABC=120°,则DB的长为()AB4CD2【考点】菱形的性质【分析】证明ABD是等边三角形,即可得出结论【解答】解:四边形ABCD是菱形,ABC=120°,AB=AD,BAD=60°,ABD是等边三角形,DB=AB,菱形ABCD的周长
14、为16,DB=AB=4;故选:B9已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()ABCD【考点】反比例函数的图象【分析】由矩形的面积公式可得xy=10,即y=(x0),从而得出其函数图象【解答】解:xy=10,y=(x0),故选:C10如图,已知直线abc,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,AE=10,BD=3,则DF的值是()A4B4.5C5D5.5【考点】平行线分线段成比例【分析】根据平行线分线段成比例定理列出比例式,求出BF,计算即可【解答】解:abc,=,即=,解得,BF=,则DF=BFBD=4.5,故选:B11已知抛物线y=
15、3(x2)2+k(k为常数),A(3,y1),B(3,y2),C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()Ay1y2y3By2y1y3Cy2y3y1Dy3y2y1【考点】二次函数图象上点的坐标特征【分析】先求出二次函数y=3(x2)2+k的图象的对称轴,然后判断出A(3,y1),B(3,y2),C(4,y3)在抛物线上的位置,再求解【解答】解:二次函数y=3(x2)2+k中a=30抛物线开口向上,对称轴为x=2,B(3,y2),C(4,y3)中横坐标均大于2,它们在对称轴的右侧y3y2A(3,y1)中横坐标小于2,它在对称轴的左侧,它关于x=2的对称点为2×
16、2(3)=7,A点的对称点是D(7,y1)743,a0时,抛物线开口向上,在对称轴的右侧y随x的增大而增大,y1y3y2故选:C12如图,二次函数y1=ax2+bx+c与一次函数y2=kx+b的交点A,B的坐标分别为(1,3),(6,1),当y1y2时,x的取值范围是()A1x6Bx1或x6C3x1Dx3或x1【考点】二次函数的图象;一次函数的图象【分析】根据函数图象,找出抛物线在直线上方的部分的自变量x的取值范围即可【解答】解:由图可知,当x1或x6时,抛物线在直线的上方,所以,当y1y2时,x的取值范围是x1或x6故选B13二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数
17、y=bx+c在同一坐标系中的大致图象是()ABCD【考点】二次函数的图象;一次函数的图象;反比例函数的图象【分析】先根据二次函数的图象开口向下可知a0,再由函数图象经过原点可知c=0,利用排除法即可得出正确答案【解答】解:二次函数的图象开口向下,反比例函数y=的图象必在二、四象限,故A、C错误;二次函数的图象经过原点,c=0,一次函数y=bx+c的图象必经过原点,故B错误故选D14如图,在x轴的上方,直角BOA绕原点O按顺时针方向旋转,若BOA的两边分别与函数y=、y=的图象交于B、A两点,则OAB的大小的变化趋势为()A逐渐变小B逐渐变大C时大时小D保持不变【考点】相似三角形的判定与性质;反
18、比例函数图象上点的坐标特征【分析】如图,作辅助线;首先证明BOMOAN,得到;设B(m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,此为解决问题的关键性结论;运用三角函数的定义证明知tanOAB=为定值,即可解决问题【解答】解:如图,分别过点A、B作ANx轴、BMx轴;AOB=90°,BOM+AON=AON+OAN=90°,BOM=OAN,BMO=ANO=90°,BOMOAN,;设B(m,),A(n,),则BM=,AN=,OM=m,ON=n,mn=,mn=;AOB=90°,tanOAB=;BOMOAN,=,由知tanO
19、AB=为定值,OAB的大小不变,故选:D15抛物线y=ax2+bx+c交x轴于A(1,0),B(3,0),交y轴的负半轴于C,顶点为D下列结论:2a+b=0;2c3b;当m1时,a+bam2+bm;当ABD是等腰直角三角形时,则a=;当ABC是等腰三角形时,a的值有3个其中正确的有()ABCD【考点】二次函数图象与系数的关系【分析】根据二次函数图象与系数的关系,二次函数与x轴交于点A(1,0)、B(3,0),可知二次函数的对称轴为x=1,即,可得2a与b的关系;将A、B两点代入可得c、b的关系;函数开口向下,x=1时取得最小值,则m1,可判断;根据图象AD=BD,顶点坐标,判断;由图象知BCA
20、C,从而可以判断【解答】解:二次函数与x轴交于点A(1,0)、B(3,0)二次函数的对称轴为x=1,即b=2a2a+b=0(故正确)二次函数y=ax2+bx+c与x轴交于点A(1,0)、B(3,0)ab+c=0,9a+3b+c=0又b=2a3b=6a,a(2a)+c=03b=6a,2c=6a2c=3b(故错误)抛物线开口向上,对称轴是x=1x=1时,二次函数有最小值m1时,a+b+cam2+bm+c即a+bam2+bm(故正确)AD=BD,AB=4,ABD是等腰直角三角形AD2+BD2=42解得,AD2=8设点D坐标为(1,y)则1(1)2+y2=AD2解得y=±2点D在x轴下方点D
21、为(1,2)二次函数的顶点D为(1,2),过点A(1,0)设二次函数解析式为y=a(x1)220=a(11)22解得a=(故正确)由图象可得,ACBC故ABC是等腰三角形时,a的值有2个(故错误)故正确,错误故选项A正确,选项B错误,选项C错误,选项D错误故选A二、填空题(本大题共6个小题,每小题3分,共18分把答案填在题中横线上)16已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是(1,3)【考点】反比例函数图象的对称性【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称【解答】解:反比例函数的图象与经过原点的直线的两个交点
22、一定关于原点对称,另一个交点的坐标与点(1,3)关于原点对称,该点的坐标为(1,3)故答案为:(1,3)17在ABC中,若AB=AC=5,BC=8,则sinB=【考点】解直角三角形;等腰三角形的性质【分析】根据勾股定理,可得AD的长,根据正弦函数等于对边比斜边,可得答案【解答】解:作ADBC于D,如图,BD=BC=4,由勾股定理,得AD=3由正弦函数,得sinB=,故答案为:18如图,点O是O的圆心,点A、B、C在O上,AOB=42°,则ACB的度数是21°【考点】圆周角定理【分析】根据圆周角定理得到ACB=AOB,即可计算出ACB【解答】解:AOB=42°,AC
23、B=AOB=21°故答案为:2119如图,利用标杆BE测量建筑物DC的高度,如果标杆BE长为1.5米,测得AB=2米,BC=8米,且点A、E、D在一条直线上,则楼高CD是7.5米【考点】相似三角形的应用【分析】先证明ABEACD,然后利用相似比求CD即可【解答】解:BECD,ABEACD,=,即=,解得CD=7.5,所以楼高CD是7.5米故答案为7.520已知二次函数y=x2+2x+m的部分图象如图所示,则关于x的一元二次方程x2+2x+m=0的解为x1=4,x2=2【考点】抛物线与x轴的交点【分析】根据图象可知,二次函数y=x2+2x+m的部分图象经过点(4,0),把该点代入方程,
24、求得m值;然后把m值代入关于x的一元二次方程x2+2x+m=0,求根即可【解答】解:根据图象可知,二次函数y=x2+2x+m的部分图象经过点(4,0),所以该点适合方程y=x2+2x+m,代入,得42+2×4+m=0解得m=8 把代入一元二次方程x2+2x+m=0,得x2+2x+8=0,解得x1=4,x2=2,故答案为x1=4,x2=221如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,An,将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:抛物线的顶点M1,M2,M3,Mn,都在直线L:y=x上;抛物线依次经
25、过点A1,A2,A3An,则M2016顶点的坐标为【考点】二次函数图象与几何变换【分析】根据抛物线y=x2与抛物线yn=(xan)2+an相交于An,可发现规律,根据规律,可得答案【解答】解:M1(a1,a1)是抛物线y1=(xa1)2+a1的顶点,抛物线y=x2与抛物线y1=(xa1)2+a1相交于A1,得x2=(xa1)2+a1,即2a1x=a12+a1,x=(a1+1)x为整数点a1=1,M1(1,1);M2(a2,a2)是抛物线y2=(xa2)2+a2=x22a2x+a22+a2顶点,抛物线y=x2与y2相交于A2,x2=x22a2x+a22+a2,2a2x=a22+a2,x=(a2+
26、1)x为整数点,a2=3,M2(3,3),M3(a3,a3)是抛物线y2=(xa3)2+a3=x22a3x+a32+a3顶点,抛物线y=x2与y3相交于A3,x2=x22a3x+a32+a3,2a3x=a32+a3,x=(a3+1)x为整数点a3=5,M3(5,5),点M2016的坐标为:2016×21=4031,M2016,故答案是:三、解答题(本大题共7个小题,共57分解答应写出文字说明、证明过程或演算步骤)22(1)计算: sin45°+3tan30°;(2)解方程:x26x+4=0【考点】实数的运算;解一元二次方程-配方法;特殊角的三角函数值【分析】(1)
27、把sin45°、tan30°的值代入代数式,化简后计算出最后的结果(2)利用配方法求出方程的解【解答】解:(1)原式=+3×2=1+2=1;(2)x26x=4x26x+9=5(x3)2=5x3=x=3±所以x1=3+,x2=323有四张背面相同的纸牌A、B、C、D正面分别画有四个不同的几何图形(如图所示),小亮将这四张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张(1)用树状图或列表法表示两次摸牌的所有可能的结果(纸牌用A、B、C、D表示);(2)求摸出的两次牌正面图形都是中心对称图形的概率【考点】列表法与树状图法;中心对称图形【分析】(1)首先根据题
28、意画出树状图,然后由树状图求得所有等可能的结果;(2)由树状图可求得摸出两张牌面图形都是中心对称图形的纸牌的情况,再利用概率公式即可求得答案【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)A,B,D是中心对称图形,摸出两张牌面图形都是中心对称图形的纸牌的有6种情况,摸出两张牌面图形都是中心对称图形的纸牌的概率为:24(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,BOD=160°,求BCD的度数【考点】矩形的性质;全等三角形的判定与性质;圆周角定理;圆内接四边形的性质【分析】(1)根据矩形的性质得出AB=CD,
29、B=C=90°,求出BE=CF,根据SAS推出ABEDCF即可;(2)根据圆周角定理求出BAD,根据圆内接四边形性质得出BCD+BAD=180°,即可求出答案【解答】(1)证明:四边形ABCD是矩形,AB=CD,B=C=90°,BF=CE,BE=CF,在ABE和DCF中ABEDCF,AE=DF;(2)解:BOD=160°,BAD=BOD=80°,A、B、C、D四点共圆,BCD+BAD=180°,BCD=100°25放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝如图,他在A处不小心让风筝挂在了一棵树梢上,风筝
30、固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米(风筝线AD,BD均为线段,1.414,1.732,最后结果精确到1米)【考点】解直角三角形的应用【分析】作DHBC于H,设DH=x米,根据三角函数表示出AH于BH的长,根据AHBH=AB得到一个关于x的方程,解方程求得x的值,进而求得ADBD的长,即可解题【解答】解:作DHBC于H,设DH=x米ACD=90°,在直角ADH中,DAH=3
31、0°,AD=2DH=2x,AH=DH÷tan30°=x,在直角BDH中,DBH=45°,BH=DH=x,BD=x,AHBH=AB=10米,xx=10,x=5(+1),小明此时所收回的风筝的长度为:ADBD=2xx=(2)×5(+1)(21.414)×5×(1.732+1)8米答:小明此时所收回的风筝线的长度约是8米26教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10,加热到100,停止加热,水温开始下降,此时水温()与开机后用时(min)成反比例关系直至水温降至20,饮水机关机饮水机关机后即刻自动开机,重复上述
32、自动程序如图为在水温为20时,接通电源后,水温y()和时间x(min)的关系(1)求饮水机接通电源到下一次开机的间隔时间(2)在(1)中的时间段内,要想喝到超过50的水,有多长时间?【考点】反比例函数的应用【分析】(1)首先求得两个函数的解析式,然后代入y=20后求得两个时间相减即可得到答案;(2)代入两个函数y=50求得两个时间相减即可确定答案【解答】解:开机加热时每分钟上升10,从20到100需要8分钟,设一次函数关系式为:y=k1x+b,将(0,20),(8,100)代入y=k1x+b,得k1=10,b=20y=10x+20(0x8),设反比例函数关系式为:y=,将(8,100)代入,得
33、k=800,y=,将y=20代入y=,解得x=40;饮水机接通电源到下一次开机的间隔时间为40分钟;(2)y=10x+20(0x8)中,令y=50,解得x=3;反比例函数y=中,令y=50,解得:x=16,要想喝到超过50的水,有163=13分钟27一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)50607080销售量y(千克)100908070(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千
34、克售价为多少元时,批发商获得的利润w(元)最大此时的最大利润为多少元【考点】二次函数的应用【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值【解答】解:(1)设y与x的函数关系式为y=kx+b(k0),根据题意得,解得故y与x的函数关系式为y=x+150;(2)根据题意得(x+150)(x20)=4000,解得x1=70,x2=10090(不合题意,舍去)故该批发商若想获
35、得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(x+150)(x20)=x2+170x3000=(x85)2+4225,10,当x=85时,w值最大,w最大值是4225该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元28如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C抛物线y=ax2+bx+c的对称轴是x=且经过A、C两点,与x轴的另一交点为点B(1)直接写出点B的坐标;求抛物线解析式(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC求PAC的面积的最大值,并求出此时点P的坐标(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似?若存在,求出点M的坐标;若不存在,请说明理由【考点】二次函数综合题【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高中生期末评语(35篇)
- 商业航天产业园项目运营方案
- 《糖尿病流行病学》课件
- 2024影楼与化妆师合作化妆造型服务合同书3篇
- 2024年高端酒店租赁服务详细协议
- 2024年绿色环保家居建材供应与安装合同3篇
- 2024年航空航天器零部件制造合同
- 2024年货物清关代理合同
- 2024年短期租赁轿车协议
- 2024林业土地承包合同涉及林地征收补偿协议
- 《农产品安全生产》考试复习题库(学生用)
- 监理安全保证体系
- 野外生存2-1课件
- 谢孟媛中级文法讲义整理版
- 关于历史大单元、大概念教学的讨论 课件-高考历史一轮复习
- 旅游者对鼓浪屿旅游产品的满意度调查问卷
- 人教版初二数学下册《第十七章小结与复习》课件
- 科技水晶质感产品推广PPT模板
- 化工仪表及自动化第六版-课后-答案
- 老化箱点检表A3版本
- 消防设施验收移交单
评论
0/150
提交评论