




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形证明教学目标了解作为证明基础的公理的内容,掌握证明的基本步骤和书写格式重点、难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理教学内容1等腰三角形一、主要知识点1、 证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形的性质是对应边相等,对应角相等。2、 等腰三角形的有关知识点。等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。(三线合一)3、 等边三角形的有关知识点。判定:有一个角等于60°的等腰三角形是等边三角形; 三条边都相等的三角形是等边三角形; 三个角都是60°的
2、三角形是等边三角形; 有两个叫是60°的三角形是等边三角形。性质:等边三角形的三边相等,三个角都是60°。 4、反证法:先假设命题的结论不成立,然后推导出 与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。这种证明方法称为反证法二、重点例题分析例1: 如下图,在ABC中,B=90°,M是AC上任意一点(M与A不重合)MDBC,交ABC的平分线于点D,求证:MD=MA. 例2 如右图,已知ABC和BDE都是等边三角形,求证:AE=CD. 例3: 如图:已知AB=AE,BCED,BE,AFCD,F为垂足, 求证: ACAD; CFDF。 例4
3、如图1、图2,AOB,COD均是等腰直角三角形,AOBCOD90º,(1)在图1中,AC与BD相等吗?请说明理由(2)若COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗?为什么?例5 如图,在ABC中,AB=AC、D是AB上一点,E是AC延长线上一点,且CE=BD,连结DE交BC于F。(1)猜想DF与EF的大小关系;(2)请证明你的猜想。.2直角三角形一、主要知识点 1、直角三角形的有关知识。直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;在直角三角形中,如果一个锐角等于30°,那么它所
4、对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。2、互逆命题、互逆定理 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.二、典型例题分析 例1 :说出下列命题的逆命题,并判断每对命题的真假: (1)四边形是多边形; (2)两直线平行,同旁内角互补; (3)如果ab=0,那么a=0,b=0; (4)在一个三角形中有两个角相等,那么这两个角所对的边相等例2:如图,中,求的长。
5、例3 :如图所示的一块地,ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。例4:如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米? 3.线段的垂直平分线 4.角平分线一、主要知识点1、 线段的垂直平分线。线段垂直平分线上的点到这条线段两个端点的距离相等;到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。2、 角平分线。角平分线上的点到这个角的两边的距离相等。在一个角的内部,
6、且到角的两边距离相等的点,在这个角的平分线上。三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。3、 逆命题、互逆命题的概念,及反证法如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。二、重点例题分析例1:(1)在ABC中,ABAC,AB的垂直平分线交AB于N,交BC的延长线于M,A,求NMB的大小(2)如果将(1)中A的度数改为,其余条件不变,再求NMB的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的A改为钝角,对这个问题规律性的认识是否需要加以修改ABCNMABCNMABCNM例2:在ABC中,A
7、B的中垂线DE交AC于F,垂足为D,若AC=6,BC=4,求BCF的周长。 例3:如图所示,AC=AD,BC=BD,AB与CD相交于点E。求证:直线AB是线段CD的垂直平分线。 例4:如图所示,在ABC中,AB=AC,BAC=1200,D、F分别为AB、AC的中点,E、G在BC上,BC=15cm,求EG的长度。 例5::如图所示,RtABC中,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F。求证:BE垂直平分CD。例6::在ABC中,点O是AC边上一动点,过点O作直线MNBC,与ACB的角平分线交于点E,与ACB的外角平分线交于点F,求证:OE=OF AOFECBMN 例7、如图所示,AB>AC,的平分线与BC的垂直平分线相交于D,自D作于E,求证:BE=CF。相应练习1、 如图,在ABC中,AB=AC=BC,AE= CD,AD、BE相交于点P,BQAD于Q。求证:BP=2PQPQEDCBAQRPBCA2、 如图,ABC中,AB= AC,P、Q、R分别在AB、BC、AC上,且BP=CQ,BQ=CR。求证:点Q在PR的垂直平分线上。3、 如图,ABC中,AD为BAC的平分线,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海市各区高三二模语文试题汇编《古诗鉴赏》含答案
- 《网络布局》课件
- 小儿透析失衡综合征的临床护理
- 2025商场租赁合同范本模板
- 2025教科书供货合同范本
- 社工模拟考试卷子及答案
- 山西省一模初中化学试卷及答案
- 三中中学初一试卷及答案
- 2025便捷高效的借款合同
- 老年人社会参与与互助合作考核试卷
- 《清水混凝土技术》课件
- 合同自动续签模板
- 架线弧垂计算表(应力弧垂插值计算)
- 国家开放大学《政治学原理》章节自检自测题参考答案
- 水电安装全套技术交底
- 三都县一起少数民族陆氏家族的调查
- Pentacam三维眼前节分析仪在眼科临床中的应用
- 顺式-甘氨酸合铜的制备及成份分析课件
- 刑法分论课件(第三章-危害公共安全罪)
- 【深信服】PT1-adesk认证考试复习题库(含答案)
- 房屋买卖合同个人房屋买卖合同
评论
0/150
提交评论