世界数学名人简介_第1页
世界数学名人简介_第2页
世界数学名人简介_第3页
世界数学名人简介_第4页
世界数学名人简介_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 中国中国数学名人数学名人 外国外国数学名人数学名人 数学轶事数学轶事外国数学名人外国数学名人毕达哥拉斯毕达哥拉斯欧几里得欧几里得笛卡儿笛卡儿牛顿牛顿莱布尼兹莱布尼兹哥德巴赫哥德巴赫欧拉欧拉高斯高斯罗巴切夫斯基罗巴切夫斯基阿贝尔阿贝尔康托尔康托尔希尔伯特希尔伯特中国数学名人中国数学名人刘徽刘徽祖冲之祖冲之秦九韶秦九韶杨辉杨辉华罗庚华罗庚陈景润陈景润数学轶事数学轶事数学神童维纳的年龄数学神童维纳的年龄数学史上的一则数学史上的一则“冤案冤案”爱因斯坦谜语爱因斯坦谜语阿基米德群牛问题阿基米德群牛问题合理分配赌注问题合理分配赌注问题四色猜想四色猜想 毕达哥拉斯学派有一种习惯,就是将一切发明都归于学派的

2、领袖,而且秘而不毕达哥拉斯学派有一种习惯,就是将一切发明都归于学派的领袖,而且秘而不宣,以致后人不知是何人在何时所发明的。他们很重视数学,企图用数来解释一切。宣,以致后人不知是何人在何时所发明的。他们很重视数学,企图用数来解释一切。宣称数是宇宙万物的本源,研究数学的目的并不在于实用而是为了探索自然的奥秘。宣称数是宇宙万物的本源,研究数学的目的并不在于实用而是为了探索自然的奥秘。毕达哥拉斯本人以发现勾股定理毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理西方称毕达哥拉斯定理)著称于世。这定理早已为著称于世。这定理早已为巴比伦人和中国人所知,不过最早的证明大概可归功于毕达哥拉斯学派。这个学派巴比

3、伦人和中国人所知,不过最早的证明大概可归功于毕达哥拉斯学派。这个学派还有一个特点,就是将算术和几何紧密联系起来,如把算术中的单位看作还有一个特点,就是将算术和几何紧密联系起来,如把算术中的单位看作“没有位没有位置的点置的点”,而把几何的点看作,而把几何的点看作“有位置的单位有位置的单位”。 毕达哥拉斯(毕达哥拉斯(Pythagoras约公元前约公元前580约前约前500)古)古希腊哲学家、数学家、天文学家。生于萨摩斯(今希腊东部希腊哲学家、数学家、天文学家。生于萨摩斯(今希腊东部小岛),卒于他林敦(今意大利南部塔兰托)。早年曾游历小岛),卒于他林敦(今意大利南部塔兰托)。早年曾游历埃及、巴比伦

4、等地。为了摆脱暴政,他移居意大利半岛南部埃及、巴比伦等地。为了摆脱暴政,他移居意大利半岛南部的克罗托内,在那里组织了一个政治、宗教、数学合一的秘的克罗托内,在那里组织了一个政治、宗教、数学合一的秘密团体。这个团体后来在政治斗争中遭到破坏,他逃到塔兰密团体。这个团体后来在政治斗争中遭到破坏,他逃到塔兰托,后终于被杀害。托,后终于被杀害。 欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果整理收集起来,并且加以系统化,他从少数已被经验证明的公理出整理收集起来,并且加以系统化,他从少数已被经验证明的公理出发,运用逻辑推理和数学运算的方法演绎出许多

5、定理,写成了十三发,运用逻辑推理和数学运算的方法演绎出许多定理,写成了十三卷的卷的几何原本几何原本,使几何学成为一门独立的、演绎的科学。,使几何学成为一门独立的、演绎的科学。几何原本几何原本是古希腊科学的骄傲,它的基本原理和定理直到现在是古希腊科学的骄傲,它的基本原理和定理直到现在仍是科学教科书的一部分。仍是科学教科书的一部分。 欧几里得欧几里得(公元前公元前330年前年前275年年)是古希腊是古希腊数学家,以其所著的数学家,以其所著的几何原本几何原本闻名于世。关闻名于世。关于他的生平,现在知道得很少。早年大概就学于于他的生平,现在知道得很少。早年大概就学于雅典,深知柏拉图的学说。公元前雅典,

6、深知柏拉图的学说。公元前300年左右年左右,在在托勒密王的邀请下,来到亚历山大,并长期在那托勒密王的邀请下,来到亚历山大,并长期在那里工作。里工作。 他主张彻底抛弃经院哲学的偏见,把数学上从明白无误的公理出发他主张彻底抛弃经院哲学的偏见,把数学上从明白无误的公理出发进行推导的方法应用于哲学研究;提倡进行推导的方法应用于哲学研究;提倡“普遍怀疑普遍怀疑”,从其名言,从其名言“我思故我思故我在我在”推定了精神主体的存在;同时也肯定物质世界的客观存在。认为在推定了精神主体的存在;同时也肯定物质世界的客观存在。认为在第一次外力推动之后,物质就不断运动(机械运动),正是运动造成了物第一次外力推动之后,物

7、质就不断运动(机械运动),正是运动造成了物质的多样性。他的哲学是充满矛盾的二元论和唯心主义的唯理论,其方法质的多样性。他的哲学是充满矛盾的二元论和唯心主义的唯理论,其方法论强调理性和逻辑推理而轻视经验。主要著作有:论强调理性和逻辑推理而轻视经验。主要著作有:方法谈方法谈、形而上形而上学的沉思学的沉思、哲学原理哲学原理。 笛卡儿笛卡儿 (Renescartes,15961650) 法国法国哲学家、自然科学家。出身贵族家庭。少就读于拉哲学家、自然科学家。出身贵族家庭。少就读于拉弗累舍耶稣会学校和普瓦提埃大学。曾长期从军。弗累舍耶稣会学校和普瓦提埃大学。曾长期从军。16291649年隐居荷兰潜心著述

8、。年隐居荷兰潜心著述。1649年应瑞典女年应瑞典女王之聘赴斯德哥尔摩,次年卒于该国。著有关于生王之聘赴斯德哥尔摩,次年卒于该国。著有关于生理学、心理学、光学、流星学、代数学和解析几何理学、心理学、光学、流星学、代数学和解析几何学的论文和专著,发明笛卡儿坐标和笛卡儿曲线,学的论文和专著,发明笛卡儿坐标和笛卡儿曲线,被认为是解析几何学的奠基人。被认为是解析几何学的奠基人。 牛顿牛顿1661年入英国剑桥大学三一学院,年入英国剑桥大学三一学院,1665年获文学士年获文学士学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大多数重要科学创造的蓝图。

9、多数重要科学创造的蓝图。1667年回剑桥后当选为三一学院年回剑桥后当选为三一学院院委,次年获硕士学位。院委,次年获硕士学位。1669年任卢卡斯教授直到年任卢卡斯教授直到1701年。年。1696年任皇家造币厂监督,并移居伦敦。年任皇家造币厂监督,并移居伦敦。1703年任英国皇家年任英国皇家学会会长。学会会长。1706年受女王安娜封爵。他晚年潜心于自然哲学年受女王安娜封爵。他晚年潜心于自然哲学与神学。与神学。 牛顿在科学上最卓越的贡献是微积分和经典力学的创建。牛顿在科学上最卓越的贡献是微积分和经典力学的创建。 牛顿,是英国伟大的数学家、物理学家、牛顿,是英国伟大的数学家、物理学家、天文学家和自然哲

10、学家。天文学家和自然哲学家。1642年年12月月25日生日生于英格兰林肯郡格兰瑟姆附近的沃尔索普于英格兰林肯郡格兰瑟姆附近的沃尔索普村村,1727年年3月月20日在伦敦病逝。日在伦敦病逝。 莱布尼兹(莱布尼兹(GottfriendWilhelmLeibniz,1646-1716)是)是17、18世纪之交德国最重要的数学家、物理世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。莱布尼兹可磨灭的贡献。莱布尼兹15岁进莱比

11、锡大学法律系学岁进莱比锡大学法律系学习,习,20岁发表论文表述现代计算机理论,同年获得法岁发表论文表述现代计算机理论,同年获得法学博士学位。学博士学位。 莱布尼兹于莱布尼兹于16731676年间发明了微积分,年间发明了微积分,1684年公布了论文;牛年公布了论文;牛顿于顿于16651666年间发明了微积分,年间发明了微积分,1687年公布在巨著年公布在巨著自然哲学的数自然哲学的数学原理学原理中。微积分到底是谁发明的,这在世界科学史上曾是一桩公案。中。微积分到底是谁发明的,这在世界科学史上曾是一桩公案。 莱布尼兹在数学中引进了行列式,并把函数、常数、变量、坐标等莱布尼兹在数学中引进了行列式,并把

12、函数、常数、变量、坐标等基本概念奉献给数学。莱布尼兹还是中国古老文明的推崇者,他独立地发基本概念奉献给数学。莱布尼兹还是中国古老文明的推崇者,他独立地发现二进制计数法则,成为计算机基础理论的先驱。现二进制计数法则,成为计算机基础理论的先驱。 欧拉欧拉(Euler),瑞士数学家及自然科学,瑞士数学家及自然科学家。家。1707年年4月月15日出生於瑞士的巴塞尔,日出生於瑞士的巴塞尔,1783年年9月月18日於俄国彼得堡去逝。欧拉日於俄国彼得堡去逝。欧拉出生於牧师家庭,自幼受父亲的教育。出生於牧师家庭,自幼受父亲的教育。13岁时入读巴塞尔大学,岁时入读巴塞尔大学,15岁大学毕业,岁大学毕业,16岁获

13、硕士学位。岁获硕士学位。 欧拉是欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。他是数学史上最多产的数学家,更把数学推至几乎整个物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,变分法等的课本,无穷小分析引论无穷小分析引论、微分学原理微分学原理、积分学积分学原理原理等都成为数学中的经典著作。等都成为数学中的经典著作。 欧拉对数学的研究如此广泛,因此在许多数学的分支中也可

14、经常见到欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。以他的名字命名的重要常数、公式和定理。哥德巴赫哥德巴赫 哥德巴赫(哥德巴赫(Goldbach C.,1690.3.181764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族于在欧洲各国访问期间结识了贝努利家族,所以对所以对数学研究产生了兴趣;曾担任中学教师。数学研究产生了兴趣;曾担任中学教师。1725年年到俄国,

15、同年被选为彼得堡科学院院士;到俄国,同年被选为彼得堡科学院院士;1725年年1740年担任彼得堡科学院会议秘书;年担任彼得堡科学院会议秘书;1742年移居年移居莫斯科,并在俄国外交部任职。莫斯科,并在俄国外交部任职。1729年年1764年,年,哥德巴赫与欧拉保持了长达三十五年的书信往来。哥德巴赫与欧拉保持了长达三十五年的书信往来。在在1742年年6月月7日给欧拉的信中,哥德巴赫提出了日给欧拉的信中,哥德巴赫提出了一个命题。他写道:一个命题。他写道:我的问题是这样的:我的问题是这样的:随便取某一个奇数,比如随便取某一个奇数,比如77,可以把它写成三,可以把它写成三个素数之和:个素数之和:77=5

16、3+17+7;再任取一个奇数,比如再任取一个奇数,比如461, 461=449+7+5, 也是三个素数之和,也是三个素数之和,461还可以写成还可以写成257+199+5,仍然是三个素数之和。这样,仍然是三个素数之和。这样,我发现:任何大于我发现:任何大于5的奇数都是三个素数之和的奇数都是三个素数之和。 但这怎样证明呢?虽然做过的每一次试验都得到了上述但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。一般的证明,而不是个别的检验。 欧拉回信说,这个命题看来是正确的,但是他

17、也给不出欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个严格的证明。同时欧拉又提出了另一个命题:任何一个大于大于2的偶数都是两个素数之和。但是这个命题他也没的偶数都是两个素数之和。但是这个命题他也没能给予证明。能给予证明。 不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于任何一个大于5的奇数都可以写成如下形式:的奇数都可以写成如下形式: 2N+1=3+2(N-1),其中,其中2(N-1)4. 若欧拉的命题成立,则偶数若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之可以写成两个素

18、数之和,于是奇数和,于是奇数2N+1可以写成三个素数之和,从而,对于可以写成三个素数之和,从而,对于大于大于5的奇数,哥德巴赫的猜想成立。的奇数,哥德巴赫的猜想成立。 但是哥德巴赫的命题成立并不能保证欧拉命题的成立。但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。因而欧拉的命题比哥德巴赫的命题要求更高。 现在通常把这两个命题统称为哥德巴赫猜想二百多年来,现在通常把这两个命题统称为哥德巴赫猜想二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有动,迄今为

19、止它仍然是一个既没有得到正面证明也没有被推翻的命题。被推翻的命题。1900年,德国数学家希尔伯特(年,德国数学家希尔伯特(Hilbert D.,1862.1.231943.2.14)在巴黎国际数学家大会上提)在巴黎国际数学家大会上提出了二十三个最重要的问题供二十世纪的数学家来研究。出了二十三个最重要的问题供二十世纪的数学家来研究。其中第八问题为素数问题;在提到哥德巴赫猜想时,希其中第八问题为素数问题;在提到哥德巴赫猜想时,希尔伯特说这是以往遗留的最重要的问题之一。尔伯特说这是以往遗留的最重要的问题之一。 近一百年来,哥德巴赫猜想吸引着世界上许多著近一百年来,哥德巴赫猜想吸引着世界上许多著名的数

20、学家,并在证明上取得了很大的进展。中名的数学家,并在证明上取得了很大的进展。中国数学家陈景润于国数学家陈景润于1966年取得了重大的进展,他年取得了重大的进展,他证明了每一个充分大的偶数都可以表示为一个素证明了每一个充分大的偶数都可以表示为一个素数与另一个自然数之和,而这另一个自然数可以数与另一个自然数之和,而这另一个自然数可以表示为至多两个素数的乘积。通常简称此结果为表示为至多两个素数的乘积。通常简称此结果为大偶数可表为大偶数可表为1+2。在陈景润之前,关于大偶。在陈景润之前,关于大偶数可表示为数可表示为s个素数之积与个素数之积与t个素数之积的和的个素数之积的和的s+ t问题的研究进展情况如

21、下:问题的研究进展情况如下: 1920年,挪威的布龙证明了年,挪威的布龙证明了9+9; 1924年,德国的拉特马赫证明了年,德国的拉特马赫证明了7+7; 1932年,英国的埃斯特曼证明了年,英国的埃斯特曼证明了6+6; 1937年,意大利的蕾西先后证明了年,意大利的蕾西先后证明了5+7、4+9、3+15和和2+366; 1938年,苏联的布赫夕太勃证明了年,苏联的布赫夕太勃证明了5+5,1940年他又证明了年他又证明了4+4; 1948年,匈牙利的兰恩尼证明了年,匈牙利的兰恩尼证明了1+C,其中,其中C很大;很大; 1956年,中国的王元(年,中国的王元(1930 )证明了)证明了3+4;19

22、57年,他又先后证明了年,他又先后证明了3+3和和2+3; 1962年,中国的潘承洞(年,中国的潘承洞(1934 )和苏联的巴尔巴恩证明了)和苏联的巴尔巴恩证明了1+5; 1962年,中国的王元证明了年,中国的王元证明了1+4;1963年,中国的潘承洞和苏联的巴尔巴年,中国的潘承洞和苏联的巴尔巴恩证也证明了恩证也证明了1+4; 1965年,苏联的布赫夕太勃和小维诺格拉夫及意大利的波波里证明了年,苏联的布赫夕太勃和小维诺格拉夫及意大利的波波里证明了1+3; 1966后,中国的陈景润证明了后,中国的陈景润证明了1+2。 最终将由哪个国家的哪位数学家攻克大偶数表为两个素数之和(即最终将由哪个国家的哪

23、位数学家攻克大偶数表为两个素数之和(即1+1)的问题,现在还无法予测。的问题,现在还无法予测。高斯(高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数)是德国数学家、物理学家和天文学家。高斯在童年时代就表学家、物理学家和天文学家。高斯在童年时代就表现出非凡的数学天才年仅三岁,就学会了算术,现出非凡的数学天才年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的八岁因发现等差数列求和公式而深得老师和同学的钦佩大学二年级时得出正十七边形的尺规作图法,钦佩大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件解决了并给出了可用尺规作图的正多

24、边形的条件解决了两千年来悬而未决的难题,两千年来悬而未决的难题,1799年以代数基本定理年以代数基本定理的四个漂亮证明获博士学位的四个漂亮证明获博士学位高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义并在天文学,大地测量学和磁学的研究中都有杰出的贡献义并在天文学,大地测量学和磁学的研究中都有杰出的贡献1801年发年发表的表的算术研究算术研究是数学史上为数不多的经典著作之一,它开辟了数论研究是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是的全新时代非

25、欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一高斯致力于天文学研究前后约非欧几何的创立者之一高斯致力于天文学研究前后约20年,在这领域内的年,在这领域内的伟大著作之一是伟大著作之一是1809年发表的年发表的天体运动理论天体运动理论高斯对物理学也有杰出高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学高斯的一生中,还培养贡献,麦克斯韦称高斯的磁学研究改造了整个科学高斯的一生中,还培养了不少杰出的数学家了不少杰出的数学家罗巴切夫斯基罗巴切夫斯基(17921856)Lobacevskil, Nikolai Lvanovie俄国人。俄国人。1792年年12月月1

26、日生日生于诺伏哥罗德于诺伏哥罗德(现在的高尔基城现在的高尔基城)一个官吏家庭。一个官吏家庭。1802年至年至1807年在当地上中学,年在当地上中学,1807年至年至1811年在喀山大学读书,年在喀山大学读书,1811年获硕士学位年获硕士学位并留校任教。并留校任教。1814年起任教授助理,年起任教授助理,1816年年起任非常任教授,起任非常任教授,1822年起任常任教授。年起任常任教授。1820年至年至1821年起任常任教授。年起任常任教授。1820年至年至1821年及年及18233年至年至1825年兼任物理数学系系主任。年兼任物理数学系系主任。1827年至年至1846年任校长。年任校长。184

27、6年至年至1856年任喀山区的副督学。年任喀山区的副督学。1856年年2月月24日在喀山逝世。日在喀山逝世。罗巴切夫斯基在数学上的划时代的贡献是首创了一种罗巴切夫斯基在数学上的划时代的贡献是首创了一种非欧几里得几何学,即罗巴切夫斯基几何学。非欧几里得几何学,即罗巴切夫斯基几何学。阿贝尔(阿贝尔(Abel, NielsHanrik, 1802-1829)挪威数学家。)挪威数学家。1802年年8月月5日生于芬岛,日生于芬岛,1829年年4月月6日卒于弗鲁兰。日卒于弗鲁兰。 15岁时优秀的数学教师霍尔姆博发现了阿贝尔的数学天岁时优秀的数学教师霍尔姆博发现了阿贝尔的数学天才,对他给予指导。才,对他给予

28、指导。1821年阿贝尔进入克里斯蒂安尼亚年阿贝尔进入克里斯蒂安尼亚大学。大学。1824年,他解决了用根式求解五次方程的不可能年,他解决了用根式求解五次方程的不可能性问题。这一论文也寄给了格丁根的高斯,并未引起重性问题。这一论文也寄给了格丁根的高斯,并未引起重视。视。1825年,他去柏林,结识了克莱尔。他与施泰纳建议克莱尔创办了著名数学年,他去柏林,结识了克莱尔。他与施泰纳建议克莱尔创办了著名数学刊物刊物纯粹与应用数学杂志纯粹与应用数学杂志。这个杂志头三卷发表了阿贝尔。这个杂志头三卷发表了阿贝尔 22篇包括方程篇包括方程论、无穷级数、椭圆函数论等方面的论文。可惜,阿贝尔在欧洲大陆没有谋论、无穷级

29、数、椭圆函数论等方面的论文。可惜,阿贝尔在欧洲大陆没有谋到合适的职位,到合适的职位,1827年他贫困交迫地回到了挪威。一年以后,不到年他贫困交迫地回到了挪威。一年以后,不到27岁的阿岁的阿贝尔就病逝。贝尔就病逝。阿贝尔和雅可比是公认的椭圆函数论的创始人。阿贝尔发现了椭圆函数的加阿贝尔和雅可比是公认的椭圆函数论的创始人。阿贝尔发现了椭圆函数的加法定理、双周期性、并引进了椭圆积分的反演。此外,在交换群、二项级数法定理、双周期性、并引进了椭圆积分的反演。此外,在交换群、二项级数的严格理论、级数求和等方面都有巨大的贡献。这些工作使他成为分析学严的严格理论、级数求和等方面都有巨大的贡献。这些工作使他成为

30、分析学严格化的推动者。格化的推动者。康托尔(康托尔(G.Cantor,1845.31918.1),集合集合论的创始者。丹麦犹太商之子,出生于彼得论的创始者。丹麦犹太商之子,出生于彼得堡,后移居德国,堡,后移居德国,1867年在柏林获博士学位,年在柏林获博士学位,18971905年任哈勒大学教授。他的学士年任哈勒大学教授。他的学士论文虽然是关于数论方面的,但他致力于三论文虽然是关于数论方面的,但他致力于三角级数唯一性的研究,创立了集合论。角级数唯一性的研究,创立了集合论。1874年,开始引入基数的概念,由此证明了超越年,开始引入基数的概念,由此证明了超越数大大多于代数数。他是维数理论的开拓者,数

31、大大多于代数数。他是维数理论的开拓者,因而他为拓扑空间理论开辟了道路。因而他为拓扑空间理论开辟了道路。希尔伯特,希尔伯特,D.(Hilbert,David,18621943),德国数学,德国数学家,生于东普鲁士哥尼斯堡家,生于东普鲁士哥尼斯堡(前苏联加里宁格勒前苏联加里宁格勒)附近的附近的韦劳。中学时代韦劳。中学时代,希尔伯特就是一名勤奋好学的学生,对希尔伯特就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地善于灵活和深刻地掌握以至应用老师讲课的内容。掌握以至应用老师讲课的内容。1880年年,他不顾父亲让他他不顾父亲让他学法律的意愿,进

32、入哥尼斯堡大学攻读数学。学法律的意愿,进入哥尼斯堡大学攻读数学。1884年获年获得博士学位得博士学位,后来又在这所大学里取得讲师资格和升任副后来又在这所大学里取得讲师资格和升任副教授。教授。1893年被任命为正教授,年被任命为正教授,1895年年,转入格廷根大转入格廷根大学任教授,此后一直在格廷根生活和工作,于是学任教授,此后一直在格廷根生活和工作,于是930年年退休。退休。在此期间在此期间,他成为柏林科学院通讯院士他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴切夫斯基奖和波约并曾获得施泰讷奖、罗巴切夫斯基奖和波约伊奖。伊奖。1930年获得瑞典科学院的米塔格年获得瑞典科学院的米塔格-莱福勒奖

33、莱福勒奖,1942年成为柏林科学院荣誉院士。年成为柏林科学院荣誉院士。希尔伯特是一位正直的科学家希尔伯特是一位正直的科学家,第一次世界大战前夕,他拒绝在德国政府为进行欺第一次世界大战前夕,他拒绝在德国政府为进行欺骗宣传而发表的骗宣传而发表的告文明世界书告文明世界书上签字。战争期间,他敢干公开发表文章悼念上签字。战争期间,他敢干公开发表文章悼念“敌人的数学家敌人的数学家”达布。希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹达布。希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太科学家的政策。由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,太科学家的政策。由于纳粹政府的反动政策日益加

34、剧,许多科学家被迫移居外国,曾经盛极一时的格廷根学派衰落了,希尔伯特也于曾经盛极一时的格廷根学派衰落了,希尔伯特也于1943年在孤独中逝世。年在孤独中逝世。希尔伯特是对二十世纪数学有深刻影响的数学家之一。希尔伯特是对二十世纪数学有深刻影响的数学家之一。刘徽(生于公元刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位他的杰作学家,在世界数学史上,也占有杰出的地位他的杰作九章算术注九章算术注和和海岛算经海岛算经,是我国最宝贵的数学遗产,是我国最宝贵的数学遗产 九章算术九章算术约成书于东约成书于东汉之初,共有汉之

35、初,共有246个问题的解法在许多方面:如解联立方程,分数四个问题的解法在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明明 在这些证明中,显示了他在多方面的创造性的贡献他是世界上最早提出十进小数概在这些证明中,显示了他在多方面的创造性的贡献他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根在代数方面,他正确地提出了正负数的概念的人,并用十进小数来表

36、示无理数的立方根在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法在几何方面,提出了念及其加减运算的法则;改进了线性方程组的解法在几何方面,提出了割圆术割圆术,即将,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法他利用割圆术科学地求圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法他利用割圆术科学地求出了圆周率出了圆周率=3.14的结果刘徽在割圆术中提出的的结果刘徽在割圆术中提出的割之弥细,所失弥少,割之又割以至于割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣不可割,则与圆合体而无所失矣,这可视为中国古代极限观念的佳作,这可视为

37、中国古代极限观念的佳作 海岛算经海岛算经一书中,一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目富有代表性,都在当时为西方所瞩目 刘徽思想敏捷,方法灵活,既提倡推理又主张直观他是我国最早明确主张用逻辑推刘徽思想敏捷,方法灵活,既提倡推理又主张直观他是我国最早明确主张用逻辑推理的方式来论证数学命题的人理的方式来论证数学命题的人 刘徽的一生是为数学刻苦探求的一生他虽然地位低下,但人格高尚他不是沽名钓刘徽的一生是为数学刻苦探求的一生他虽然地位低下,但人格高尚他不是沽名钓誉的庸人,而是学而不厌的伟人,

38、他给我们中华民族留下了宝贵的财富誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富 祖冲之在数学上的杰出成就,是关于圆周率的计算秦汉以前,祖冲之在数学上的杰出成就,是关于圆周率的计算秦汉以前,人们以人们以径一周三径一周三做为圆周率,这就是做为圆周率,这就是古率古率后来发现古率误后来发现古率误差太大,圆周率应是差太大,圆周率应是圆径一而周三有余圆径一而周三有余,不过究竟余多少,意,不过究竟余多少,意见不一直到三国时期,刘徽提出了计算圆周率的科学方法见不一直到三国时期,刘徽提出了计算圆周率的科学方法-割割圆术圆术,用圆内接正多边形的周长来逼近圆周长刘徽计算到圆内,用圆内接正多边形的周长

39、来逼近圆周长刘徽计算到圆内接接96边形,边形, 求得求得=3.14,并指出,内接正多边形的边数越多,所,并指出,内接正多边形的边数越多,所求得的求得的值越精确祖冲之在前人成就的基础上,经过刻苦钻研,值越精确祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出反复演算,求出在在3.1415926与与3.1415927之间并得出了之间并得出了分分数形式的近似值,取数形式的近似值,取 为约率为约率 ,取,取 为密率,其中为密率,其中 取六位小数是取六位小数是3.141929,它是分子分母在,它是分子分母在1000以内最接近以内最接近值的分数值的分数 祖冲之(公元祖冲之(公元429-500年)年)是

40、我国南北朝时期,河北省涞源是我国南北朝时期,河北省涞源县人他从小就阅读了许多天文、县人他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代苦实践,终于使他成为我国古代杰出的数学家、天文学家杰出的数学家、天文学家祖冲之究竟用什么方法得出这一结果,现在无从考祖冲之究竟用什么方法得出这一结果,现在无从考查若设想他按刘徽的查若设想他按刘徽的割圆术割圆术方法去求的话,就要计方法去求的话,就要计算到圆内接算到圆内接16,384边形,这需要化费多少时间和付出边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和多么巨大的劳动啊!

41、由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的祖冲之计算得出的密率,聪敏才智是令人钦佩的祖冲之计算得出的密率, 外国外国数学家获得同样结果,已是一千多年以后的事了为了数学家获得同样结果,已是一千多年以后的事了为了纪念祖冲之的杰出贡献,有些外国数学史家建议把纪念祖冲之的杰出贡献,有些外国数学史家建议把=叫叫做做祖率祖率 祖冲之博览当时的名家经典,坚持实事求是,他从祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了严重误差,并勇于改进,在他三十三岁时编制成功了

42、大明历大明历,开辟了历法史的新纪元,开辟了历法史的新纪元祖冲之还与他的儿子祖暅(也是我国著名的数学祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计家)一起,用巧妙的方法解决了球体体积的计算他们当时采用的一条原理是:算他们当时采用的一条原理是:幂势既同,幂势既同,则积不容异则积不容异意即,位于两平行平面之间的两意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积果两个截面的面积恒相等,则这两个立体的体积相等这一原理,在西文被称为卡瓦列利原理,相等这一原理,在西文

43、被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的为但这是在祖氏以后一千多年才由卡氏发现的为了纪念祖氏父子发现这一原理的重大贡献,大家了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为也称这原理为祖暅原理祖暅原理 秦九韶(约秦九韶(约1202-1261),),字道古,四川安岳人。先后在湖北,字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广年左右被贬至梅州,(今广东梅县),不久死于任所。东梅县),不久死于任所。 他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州

44、“访习于太史,又尝从隐君子受数学访习于太史,又尝从隐君子受数学”,1247年写成著名的年写成著名的数数书九章书九章。数书九章数书九章全书凡全书凡18卷,卷,81题,分为九大类。其最题,分为九大类。其最重要的数学成就重要的数学成就-“大衍总数术大衍总数术”(一次同余组解法)与(一次同余组解法)与“正负正负开方术开方术(高次方程数值解法),使这部宋代算经在中世纪世界数高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。学史上占有突出的地位。 杨辉,中国南宋时期杰出的数学家和数学教育家。在杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。世纪中叶

45、活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有他著名的数学书共五种二十一卷。著有详解九章算详解九章算法法十二卷(十二卷(1261年)、年)、日用算法日用算法二卷(二卷(1262年)、年)、乘除通变本末乘除通变本末三卷(三卷(1274年)、年)、田亩比类乘除算法田亩比类乘除算法二卷(二卷(1275年)、年)、续古摘奇算法续古摘奇算法二卷(二卷(1275年)。年)。杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。总结和发展,有的还编成了歌决,如九归

46、口决。 他在他在续古摘奇算法续古摘奇算法中中介绍了各种形式的介绍了各种形式的纵横图纵横图及有关的构造方法,同时及有关的构造方法,同时垛积术垛积术是杨辉继沈括是杨辉继沈括隙隙积术积术后,关于高阶等差级数的研究。杨辉在后,关于高阶等差级数的研究。杨辉在纂类纂类中,将中,将九章算术九章算术246个个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。叠积、盈不足、方程、勾股等九类。 他非常重视数学教育的普及和发展,在他非常重视数学教育的普及和发展,在算法通变本末算法通变本末中,杨辉

47、为初中,杨辉为初学者制订的学者制订的习算纲目习算纲目是中国数学教育史上的重要文献。是中国数学教育史上的重要文献。工作到最后一天的华罗庚工作到最后一天的华罗庚 1985年年6月月12日,在东京一个国际学术日,在东京一个国际学术会议上,会议上,75岁的华罗庚岁的华罗庚(19101985)教授用教授用流利的英语,作了十分精彩的报告。当他讲流利的英语,作了十分精彩的报告。当他讲完最后一句话,人们还在热烈鼓掌时,他的完最后一句话,人们还在热烈鼓掌时,他的身子歪倒了。身子歪倒了。华罗庚出生于江苏省金坛县一个小商人家庭,从小喜欢数学,华罗庚出生于江苏省金坛县一个小商人家庭,从小喜欢数学,而且非常聪明。一天老

48、师出了一道数学题:而且非常聪明。一天老师出了一道数学题:“今有物不知其数,三今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何三数之剩二,五五数之剩三,七七数之剩二,问物几何?”“23!”老老师的话音刚落,华罗庚的答案就脱口而出,老师连连点头称赞他的师的话音刚落,华罗庚的答案就脱口而出,老师连连点头称赞他的运算能力。可惜因为家庭经济困难,他不得不退学去当店员,一边运算能力。可惜因为家庭经济困难,他不得不退学去当店员,一边工作,一边自学。工作,一边自学。18岁时,他又染上伤寒病,与死神搏斗半年,虽岁时,他又染上伤寒病,与死神搏斗半年,虽然活了下来,但却留下终身残疾然活了下来,但却

49、留下终身残疾右腿瘸了。右腿瘸了。 1930年,年,19岁的华罗庚写了一篇岁的华罗庚写了一篇苏家驹之代数的五次苏家驹之代数的五次方程不成立的理由方程不成立的理由,发表在上海,发表在上海科学科学杂志上。清华大杂志上。清华大学数学系主任熊庆来从文章中看到了作者的数学才华,便问学数学系主任熊庆来从文章中看到了作者的数学才华,便问周围的人,周围的人,“他是哪国留学的他是哪国留学的?在哪个大学任教在哪个大学任教?”当他知道当他知道华罗庚原来是一个华罗庚原来是一个19岁的小店员时,很受感动,主动把华罗岁的小店员时,很受感动,主动把华罗庚请到清华大学。华罗庚在清华四年中,在熊庆来教授的指庚请到清华大学。华罗庚

50、在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。名的华氏定理。 抗日战争时期,华罗庚白天在西南联大任教,晚上在昏抗日战争时期,华罗庚白天在西南联大任教,晚上在昏暗的油灯下研究。在这样艰苦的环境中,华罗庚写出了暗的油灯下研究。在这样艰苦的环境中,华罗庚写出了20多多篇论文和厚厚的一本书篇论文和厚厚的一本书堆垒素数论堆垒素数论。他特别注意理论联。他特别注意理论联系实际,系实际,1958年以后,他走

51、遍了年以后,他走遍了20多个省市自治区,动员多个省市自治区,动员群众把优选法用于农业生产。记者在一次采访时问他:群众把优选法用于农业生产。记者在一次采访时问他:“你你最大的愿望是什么最大的愿望是什么?”他不加思索地回答:他不加思索地回答:“工作到最后一工作到最后一天。天。”他的确为科学辛劳工作到最后一天,实现了自己的诺他的确为科学辛劳工作到最后一天,实现了自己的诺言。言。 陈景润陈景润(193319335 5199619963 3)是中国是中国现代数学家。现代数学家。1933年年5月月22日生于福建省日生于福建省福州市。福州市。1953年毕业于厦门大学数学系。年毕业于厦门大学数学系。由于他对塔

52、里问题的一个结果作了改进,由于他对塔里问题的一个结果作了改进,受到华罗庚的重视,被调到中国科学院数受到华罗庚的重视,被调到中国科学院数学研究所工作,先任实习研究员、助理研学研究所工作,先任实习研究员、助理研究员,再越级提升为研究员,并当选为中究员,再越级提升为研究员,并当选为中国科学院数学物理学部委员。国科学院数学物理学部委员。 陈景润是世界著名解析数论学家之一,他在陈景润是世界著名解析数论学家之一,他在50年代即对高斯年代即对高斯圆内格点问题、球内格点问题、塔里问题与华林问题的以往结果,圆内格点问题、球内格点问题、塔里问题与华林问题的以往结果,作出了重要改进。作出了重要改进。60年代后,他又

53、对筛法及其有关重要问题,进年代后,他又对筛法及其有关重要问题,进行广泛深入的研究。行广泛深入的研究。1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题哥德巴赫猜想中的(界著名数学难题哥德巴赫猜想中的(1+2),创造了距摘取),创造了距摘取这颗数论皇冠上的明珠(这颗数论皇冠上的明珠(1+1)只是一步之遥的辉煌。他证明)只是一步之遥的辉煌。他证明了每个大偶数都是一个素数及一个不超过两个素数的乘积之了每个大偶数都是一个

54、素数及一个不超过两个素数的乘积之和,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果和,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为陈氏定理,受到广泛征引。这项工作还使他与王国际上誉为陈氏定理,受到广泛征引。这项工作还使他与王元、潘承洞在元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿先。世界级的数学大师、美国学者阿威尔(威尔(AWeil)曾这样称)曾这样称赞他:陈景润的每一项工作,

55、都好像是在喜马拉雅山山巅上行赞他:陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。走。陈景润于陈景润于1978年和年和1982年两次收到国际数学家大会请他作年两次收到国际数学家大会请他作45分钟报告的邀请。这是中国人的自豪和骄傲。他所取得的成绩,分钟报告的邀请。这是中国人的自豪和骄傲。他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,辉映三山五岳,召唤着亿万的青少年奋发向前。陈景润共发表学辉映三山五岳,召唤着亿万的青少年奋发向前。陈景润共发表学术论文术论文70余篇。余篇。数学神童维纳的年龄数学神童维纳的年龄

56、n20世纪著名数学家诺伯特世纪著名数学家诺伯特维纳,从小就智力超常,三岁时就能读写,维纳,从小就智力超常,三岁时就能读写,十四岁时就大学毕业了。几年后,他又通过了博士论文答辩,成为美国十四岁时就大学毕业了。几年后,他又通过了博士论文答辩,成为美国哈佛大学的科学博士。哈佛大学的科学博士。 “我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,全都用上了,不重不漏。这意味着全体数字都向我俯首称臣,预祝我将来在数学领域不重不漏。这意味着全体数字都向我俯

57、首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业。里一定能干出一番惊天动地的大事业。”维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了。维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了。整个会场上的人,都在议论他的年龄问题。整个会场上的人,都在议论他的年龄问题。 其实这个问题不难解答,但是需要一点数字其实这个问题不难解答,但是需要一点数字“灵感灵感”。不难发现,。不难发现,21的的立方是四位数,而立方是四位数,而22的立方已经是五位数了,所以维纳的年龄最多是的立方已经是五位数了,所以维纳的年龄最多是21岁;同样道理,岁;同样道理,18的四次方是六位数,而的四次方

58、是六位数,而17的四次方则是五位数了,所的四次方则是五位数了,所以维纳的年龄至少是以维纳的年龄至少是18岁。这样,维纳的年龄只可能是岁。这样,维纳的年龄只可能是18、19、20、21这四个数中的一个。这四个数中的一个。剩下的工作就是剩下的工作就是“一一筛选一一筛选”了。了。20的立方是的立方是8000,有,有3个重复数个重复数字字0,不合题意。同理,不合题意。同理,19的四次方等于的四次方等于130321,21的四次方等于的四次方等于194481,都不合题意。最后只剩下一个,都不合题意。最后只剩下一个18,是不是正确答案呢?验算,是不是正确答案呢?验算一下,一下,18的立方等于的立方等于583

59、2,四次方等于,四次方等于104976,恰好,恰好“不重不漏不重不漏”地地用完了十个阿拉伯数字,多么完美的组合!用完了十个阿拉伯数字,多么完美的组合! 18岁的少年博士,后来果然成就了一番大事业:他成为信息论的岁的少年博士,后来果然成就了一番大事业:他成为信息论的前驱和控制论的奠基人。前驱和控制论的奠基人。 数学史上的一则数学史上的一则“冤案冤案” n人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢。古代中国、希腊和印度等地的数学家,都曾努力研究过则是进展缓慢。古代中国、希腊和印度等地的数学家,都曾努力研究

60、过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了。的三次方程,对一般形式的三次方程就不适用了。在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。在很多数学文献上,把三次方程的求根公式称为求解方法。在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺卡尔丹诺公式公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺。那么

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论