第1.9讲 二次函数的综合-备战中考数学热点难点突破(教师版)_第1页
第1.9讲 二次函数的综合-备战中考数学热点难点突破(教师版)_第2页
第1.9讲 二次函数的综合-备战中考数学热点难点突破(教师版)_第3页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【备战2019年中考数学热点、难点突破】考纲要求:1. 会用描点法画出二次函数的图像,理解二次函数的性质。2. 利用二次函数的性质解决简单的实际问题;能解决二次函数与其他知识结合的有关问题。基础知识回顾: 一二次函数与一元二次方程的关系两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0),一元二次方程ax2+bx+c=0有两个不等实根=b2-4ac0。(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点(,0) 一元二次方程ax2+bx+c=0有两个相等实根,(3)抛物线y=ax2+bx+c与

2、x轴没有公共点,一元二次方程ax2+bx+c=0没有实数根=b2-4ac0.应用举例:招数一、解决动点问题首先要结合图形性质理解运动变化的细节,尤其注意分情况讨论,准确把我分界点 建立数学模型,得出结论。【例1】如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x1)交于点A,且AB=1米运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米(1)求k,并用t表示h;(2)设v=5用t表示点M的横坐标x

3、和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围【答案】(1)k=18,h=5t2;(2)x=5t+1,y=5t2+18,y=,当y=13时,运动员在与正下方滑道的竖直距离是10米;(3)t=1.8,v乙7.5(2)v=5,AB=1,x=5t+1,h=5t2,OB=18,y=5t2+18,由x=5t+1,则t=(x-1),y=(x-1)2+18=,当y=13时,13=(x-1)2+18,解得x=6或4,

4、x1,x=6,把x=6代入y=,y=3,运动员在与正下方滑道的竖直距离是133=10(米);招数二、函数的增减性.需要特别注意,反比例函数需要分象限讨论增减性;二次函数要考虑对称轴,对称轴的左右两边的增减性不同.【例2】已知二次函数与反比例函数()的图象都经过点A(1,m)(1)求反比例函数的表达式;(2)当二次函数与反比例函数的值都随x的增大而减小时,求x的取值范围【答案】(1); (2)当时,二次函数与反比例函数的值都随x的增大而减小【解析】(1)将A(1,m)代入 得将A(1,5)代入 得 反比例函数的表达式为 (2), 抛物线的对称轴为直线,且开口向上 当时,二次函数的值随x的增大而减

5、小 又当时,函数值随x的增大而减小, 当时,二次函数与反比例函数的值都随x的增大而减小【例3】 2已知:二次函数 中的和满足下表:0123300m(1) 观察上表可求得的值为_;(2) 试求出这个二次函数的解析式;(3) 若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,请直接写出n的取值范围.【答案】(1)3;(2);(3)n>0【解析】(1)观察已知表格中的对应值可知:该函数图象的开口向上,对称轴是直线x=1,由抛物线的对称性可知:x=3时的对应函数值与x= -1时的对应函数值相等,即m的值为3;(2)把、(1,-1)、(2, 0)代入二次函数 ,得,解得:这个

6、二次函数的解析式为 ;招数三、 二次函数的一般解析式用待定系数法即可求解画出 图形,求出相应线段长.将不规则四边形面积转化为矩形面积与三角形面积的差或和即可解决.【例4】如图,已知二次函数y=ax2+3x+c的图象经过点C(0,4),与x轴分别交于点A,点B(4,0)点P是直线BC上方的抛物线上一动点(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把POC沿y轴翻折,得到四边形POPC若四边形POPC为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积【答案】(1);(2)(,2);(3)当点P

7、的坐标为(2 ,6)时,四边形ACPB的最大面积值为18(2)若四边形POPC为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP,则PECO,垂足为E,(3)如图2,P在抛物线上,设P(m,m2+3m+4),来源:设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得解得直线BC的解析为y=x+4,设点Q的坐标为(m,m+4),PQ=m2+3m+4(m+4)=m2+4m当y=0时,x2+3x+4=0,解得x1=1,x2=4,OA=1,AB=4(1)=5,【例5】如图,平面直角坐标系xOy中点A的坐标为(1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、

8、OB、AB,线段AB交y轴于点E(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值【答案】(1)E点坐标为(0, );(2) ;(3)四边形ABNO面积的最大值为,此时N点坐标为(, )【解析】(1)设直线AB的解析式为y=mx+n,把A(-1,1),B(3,3)代入得,解得,所以直线AB的解析式为yx+, 当x=0时,y×0+,所以E点坐标为(0,); (3)如图,作NGy轴交OB于G,OB的

9、解析式为y=x,设N(m,m2m)(0m3),则G(m,m),GNm(m2m)m2+m,SAOB=SAOE+SBOE=××1+××3=3,SBONSONG+SBNG3(m2+m)m2+m所以S四边形ABNOSBON+SAOBm2+m+3 (m)2+当m时,四边形ABNO面积的最大值,最大值为,此时N点坐标为(,)【例6】已知,抛物线y=ax2+3ax+c(a0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧点B的坐标为(1,0),OC=3OB(1)直接写出C点的坐标;(2)求抛物线的解析式;(3)若点D是线段AC下方抛物线上的动点,求四边形ABCD

10、面积的最大值【答案】(1) (0,3);(2) y=x2+x3;(3) 四边形ABCD面积的最大值为13.5(3)过点D作直线DEy轴,交AC于点E,交x轴于点F,过点C作CGDE于点G,如图所示当y=0时,有x2+x3=0,解得:x1=4,x2=1,点A的坐标为(4,0),AB=5设直线AC的解析式为y=kx+b(k0),将A(4,0)、C(0,3)代入y=kx+b,得:,解得:,来源:Zxxk.Com直线AC的解析式为y=x3答:四边形ABCD面积的最大值为方法、规律归纳:1、当数学问题中的条件、结论不明确或题目中含参数或图形不确定是时,需要进行分类讨论。分类讨论要按统一标准 ,做到不重复

11、不遗漏。2、对于两个函数交点的问题,一般要转化为方程来求解 ,因为两个函数图象交点的坐标一定适合两个函数解析式,只有将点的坐标代入函数解析式再利用等量代换转化为一元二次方程求解即可3、解是否存在某点问题时,一般先假设符合条件的点存在,并列出解析式,如果能求出结果,则点存在,反之则不存在。4、利用二次函数解决实际问题时,一般要先通过分析已知的数量关系,确定二次函数的解析式,建立函数模型然后通过计算函数值或代入函数值得到关于自变量的方程求解得到实际问题的答案。实战演练:1、足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被

12、踢出后经过的时间(单位:)之间的关系如下表:012来源:34567来源:08141820201814下列结论:足球距离地面的最大高度为;足球飞行路线的对称轴是直线;足球被踢出时落地;足球被踢出时,距离地面的高度是.其中正确结论的个数是( )A1 B2 C3 D42、(2017凉山)一次函数与二次函数的图象大致是( )3. 二次函数与一次函数的图象如图所示,则满的x的取值范围是( )A B或C或 D【答案】A4.如图,平行于x轴的直线AC分别交抛物线y1x2(x0)与y2(x0)B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则_【答案】【解析】解:设A点坐标为(0,a

13、),(a0),则x2a,解得x1,点B(,a),a,来源:ZXXK则x2,点C(,a),BCCDy轴,点D的横坐标与点C的横坐标相同,为,5、如图,抛物线y=x2+bx+c与直线y=x-3交于A,B两点,其中点B在y轴上,点A坐标为(-4,-5),点P为y轴左侧的抛物线上一动点,过点P作PCx轴于点C,交AB于点D(1)求抛物线的解析式;(2)以O,B,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由;(3)当点P运动到直线AB下方某一处时,PAB的面积是否有最大值?如果有,请求出此时点P的坐标【答案】(1)y=x2+x-3(2)存在,(-2-,-1-),(-1,-)

14、,(-3,-)(3)(-2,-8)【解析】(2)存在,设P(m,m2+m-3),(m0),D(m,m-3),PD=|m2+4m|PDBO,当PD=OB=3,故存在以O,B,P,D为顶点的平行四边形,|m2+4m|=3,当m2+4m=3时,m1=-2-,m2=-2+(舍),当m=-2-时,则m2+m-3=-1-P(-2-,-1-),当m2+4m=-3时,m1=-1,m2=-3,当m1=-1时,则m2+m-3=-,P(-1,-),当m2=-3,m2+m-3=-,P(-3,-),点P的坐标为(-2-,-1-),(-1,-),(-3,-)6、在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交

15、于点.(1)求直线的表达式;(2)垂直于轴的直线与抛物线交于点,与直线交于点,若,结合函数的图象,求的取值范围.(2).由,抛物线的顶点坐标为(2,-1),对称轴为直线x=2, ,+=4.令y=-1,y=-x+3,x=4. ,3<<4, 即7<<8, 的取值范围为:7<<8.7、已知直线与抛物线有一个公共点,且()求抛物线顶点的坐标(用含的代数式表示);()说明直线与抛物线有两个交点;()直线与抛物线的另一个交点记为()若,求线段长度的取值范围;()求面积的最小值()把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0,即x2+(1

16、- )x-2+=0,所以(x-1)(x+2-)=0,解得x1=1,x2 =-2,所以点N(-2,-6).(i)根据勾股定理得,MN2=(-2)-12+(-6)2=20()2,因为-1a-,由反比例函数性质知-2 -1,所以<0,所以MN=2 ( )=3 ,所以5MN7.(ii)作直线x=- 交直线y=2x-2于点E,把x=-代入y=2x-2得,y=-3,即E(-,-3),又因为M(1,0),N(-2,-6),且由()知a<0,所以QMN的面积S=SQEN+SQEM= = ,即27a2+(8S-54)a+24=0,(*)8、在平面直角坐标系xOy中,直线与抛物线的对称轴交于点,点A关

17、于x轴的对称点恰为抛物线的顶点(1)求抛物线的对称轴及a的值;(2)横、纵坐标都是整数的点叫做整点记直线与抛物线围成的封闭区域(不含边界)为W当时,直接写出区域W内的整点个数;若区域W内恰有3个整点,结合函数图象,求b的取值范围【答案】(1);(2)2;或.【解析】【详解】解:(1)变形得:. 对称轴为 点的坐标为可得抛物线顶点为 把点坐标代入抛物线可得: 9、如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,点在线段上运动,若以,为顶点的三角形与相似,求点的坐标;

18、来源:ZXXK点在轴上自由运动,若三个点,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,三点为“共谐点”.请直接写出使得,三点成为“共谐点”的的值.(2)轴,M(m,0),N( )有(1)知直线AB的解析式为,OA=3,OB=2在APM中和BPN中,APM=BPN, AMP=90°,若使APM中和BPN相似,则必须NBP=90°或BNP =90°,分两种情况讨论如下:(I)当NBP=90°时,过点N作NC轴于点C,则NBC+BNC=90°,NC=m,BC=NBP=90°,NBC+ABO=90°,BNC=ABO,RtN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论