




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 一阶微分方程的初等解法 2.1 变量分离方程与变量变换变量分离方程与变量变换yxyedxdy122yxdxdy先看例子:xyeye定义1形如) 1 . 2()()(yxfdxdy方程,称为变量分离方程.,)(),(的连续函数分别是这里yxyxf),(yxFdxdy一、变量分离方程的求解一、变量分离方程的求解,10分离变量,)()(dxxfydy这样变量就“分别开了.( ).(2.2)( )dyf x dxcy的某一原函数)(1y的某一原函数)(xf(2.2)G( )( , )(2.1).yx c由所确定的函数就为的解) 1 . 2()()(yxfdxdy两边积分得02写成将时当) 1
2、. 2(,0)(y例:122yxdxdydxxydy221Cdxxydy22131arctan.3yxC分离变量:两边积分:.,)2 . 2(,) 1 . 2(, 0)(,000必须予以补上的通解中它不包含在方程可能的解也是则使若存在yyyy注:例1求微分方程)101 (yydxdy的所有解.解:再积分方程两边同除以),101 (yy1)101 (cdxyydy积分得:110lncxyy得再将常数记为从上式中解出,cy,110 xcey. 0c,100, 0)101 (yyyy和求出方程的所有解为由故方程的所有解为:10,1xycce为任意常数. 0y和110lncxyy解:分离变量后得dxx
3、dyy123两边积分得:121ln2cxy整理后得通解为:21)(ln4cxy,)(ln42cx,0,1231无意义在由于函数其中xxyecc.00之一中有意义或故此解只在xx., 0应补上这个解未包含在通解中此外还有解 y例223ydxdyx求微分方程的通解.例3求微分方程yxpdxdy)(.)(,的连续函数是其中的通解xxp解:将变量分离后得dxxpydy)(两边积分得:1)(lncdxxpy由对数的定义有1)(cdxxpey即dxxpceey)(1.)(dxxpce,0, 0,0也包括在上式中即知若在上式中充许也是方程的解此外ycy( ),.p x dxycec为任意常数故方程的通解为1
4、)(cdxxpey例4.1)0(cos2的特解求初值问题yxydxdy解:,xydxdy的通解先求方程cos2得将变量分离时当,0yxdxydycos2两边积分得:,sin1cxy因而通解为:,sin1cxy.为任意常数其中c.,0得到的且不能在通解中取适当也是方程的解此外cy 再求初值问题的通解,1,1)0(cy得代入通解以所以所求的特解为:.sin111sin1xxy分离变量积分(转化为积分的形式)讨论解的完整性如分母为零的解)写出通解变量分离方程的解题步骤变量分离方程的解题步骤分离变量( )得方程的通解为解:积分得0y 而经检验而经检验y=0也是原方程的解。也是原方程的解。,)()(dx
5、dxcdybya例5 求解方程 , 并求满足初始条件: 当 时, 的特解. )()(byaxdxcydxdy0 xx0yy .0, 0yx,lnlnCdxxcbyyaCeyxbydxac)(解题步骤:分别、积分、写出通解和求特解。解题步骤:分别、积分、写出通解和求特解。假设 ,则所求初值解为00y. 0y00y假设 , 则所求初值问题的解为00 ()()00() ()1.d x xb y ycaxyexy2.1.2、可化为变量分离方程的类型、可化为变量分离方程的类型 引言:有的微分方程从表面上看,不引言:有的微分方程从表面上看,不是可分离变量的微分方程,但是,通是可分离变量的微分方程,但是,通
6、过适当的变量替换,就可以很容易地过适当的变量替换,就可以很容易地化为化为“变量分离方程变量分离方程”,在这里,介,在这里,介绍两类这样的方程。绍两类这样的方程。 二、可化为变量分离方程类型二、可化为变量分离方程类型(I齐次方程齐次方程 111222111222(II),.a xb ycdyfdxa xb yca b c a b c形如的方程其中为任意常数(I) 形如)5 . 2()(xygdxdy.)(的连续函数是这里uug方程称为齐次方程,求解方法:方程化为引入新变量作变量代换,)(10 xyu ,)(xuugdxdu)(udxduxdxdy这里由于解以上的变量分离方程02.30变量还原例4
7、求解方程)0(2xyxydxdyx解:方程变形为)0(2xxyxydxdy这是齐次方程,代入得令xyu uu 2即udxdux2将变量分离后得xdxudu2udxdux两边积分得:cxu)ln(即为任意常数ccxcxu, 0)ln(,)(ln(2代入原来变量,得原方程的通解为2ln() ,ln()0,0.xxcxcyxdxudu2例6求下面初值问题的解0) 1 (,)(22yxdydxyxy解:方程变形为2)(1xyxydxdy这是齐次方程,代入方程得令xyu 21 udxdux将变量分离后得xdxudu21两边积分得:cxuulnln1ln2整理后得cxuu21变量还原得cxxyxy2)(1
8、(1)0,1.yc最后由初始条件可得到故初值问题的解为) 1(212xyxdxudu21(II) 形如,222111cybxacybxadxdy.,222111为常数这里cbacba的方程可经过变量变换化为变量分离方程.分三种情况讨论的情形0121 cc)(2211xygxybaxybaybxaybxadxdy2211为齐次方程,由(I)可化为变量分离方程.的情形022121bbaa则方程可改写成设,2121kbbaa222111cybxacybxadxdy则方程化为令,22ybxaudxdu)(22ybxaf222122)(cybxacybxak)(22ufba dxdyba22这就是变量分
9、离方程不同时为零的情形与且21212103ccbbaa,00222111cybxacybxa则).0 , 0(),(,解以上方程组得交点平面两条相交的直线代表xy作变量代换(坐标变换),yYxX则方程化为YbXaYbXadXdY2211为 (1)的情形,可化为变量分离方程求解.解的步骤:,0012221110cybxacybxa解方程组,yx得解方程化为作变换,20yYxXYbXaYbXadXdY2211)(XYg离方程将以上方程化为变量分再经变换,30XYu 求解04变量还原05例7求微分方程31yxyxdxdy的通解.解:解方程组0301yxyx, 2, 1yx得代入方程得令2, 1yYx
10、XYXYXdXdY得令,XYu uudXduX112XYXY11将变量分离后得XdXuduu21)1 (两边积分得:cXuuln)1ln(21arctan2变量还原并整理后得原方程的通解为.)2() 1(ln12arctan22cyxxy注:上述解题方法和步骤适用于更一般的方程类型.)()(2211222111XYgYbXaYbXafdXdYcybxacybxafdxdy此外,诸如)(cbyaxfdxdy0)()(dyxyxgdxxyyf)(2xyfdxdyx)(2xyxfdxdycbyaxuxyu 2xyu xyu 以及0)(,()(,(ydxxdyyxNydyxdxyxM.,),(变量分离
11、方程均可适当变量变换化为些类型的方程等一次数可以不相同的齐次函数为其中yxNM例8求微分方程0)()(22dyyxxdxxyy的通解.解:,xyu 令ydxxdydu则代入方程并整理得0)(1 ()1 (udxxduudxuu即0)1 (22duuxdxu分离变量后得xdxduuu212两边积分得cxuu2lnln1变量还原得通解为.ln1cyxxy三、应用举例三、应用举例例9、雪球的融化 设雪球在融化时体积的变化率与表面积成比例,且在融化过程中它始终为球体,该雪球在开始时的半径为6cm,经过2小时后,其半径缩小为3cm,求雪球的体积随时间变化的关系。解:则表面积为雪球的体积为设在时刻),(),(tstvt)()(tksdttdv根据球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能硬件研发合作合同(2篇)
- 《餐饮服务与管理》课件-教学课件:中餐宴会服务
- 2025届高三押题信息卷(一)地理及答案
- 蝶骨嵴脑膜瘤的临床护理
- 团建新质生产力活动
- 2025年人教版小学数学一年级上册期中考试卷(带答案)
- 新质生产力新愿望
- 2025年监理工程师之水利工程目标控制自我检测试卷B卷附答案
- 2025年执业药师之西药学专业二全真模拟考试试卷B卷含答案
- 2020-2024年上海市秋考语文试题汇编含答案
- 医院感染相关法律法规课件
- 屋顶分布式光伏项目可行性研究报告
- 时花采购供应投标方案(技术方案)
- 个人理财-形考作业3(第6-7章)-国开(ZJ)-参考资料
- 2024年上海客运驾驶员从业资格证
- 人教版小学数学五年级下册《分数加减混合运算》教学设计
- 环保材料使用管理规定
- 化学反应釜操作技能考核试卷
- 高中物理必修二《动能和动能定理》典型题练习(含答案)
- 《公路桥涵施工技术规范》JTGT3650-2020
- 检验科仪器故障应急预案
评论
0/150
提交评论