版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、知识能否忆起知识能否忆起 一、公式法一、公式法1如果一个数列是等差数列或等比数列,则求和时直如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前接利用等差、等比数列的前n项和公式,注意等比数列公项和公式,注意等比数列公比比q的取值情况要分的取值情况要分q1或或q1.2一些常见数列的前一些常见数列的前n项和公式:项和公式:(1)1234n;(2)13572n1 ;(3)24682n .n2n2n二、非等差、等比数列求和的常用方法二、非等差、等比数列求和的常用方法1倒序相加法倒序相加法如果一个数列如果一个数列an,首末两端等,首末两端等“距离距离”的两项的和相的两项的和相等或等于同
2、一常数,那么求这个数列的前等或等于同一常数,那么求这个数列的前n项和即可用倒项和即可用倒序相加法,等差数列的前序相加法,等差数列的前n项和即是用此法推导的项和即是用此法推导的2分组转化求和法分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减求和而后相加减3错位相减法错位相减法如果一个数列的各项是由一个等差数列和一个等比如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前数列的对应项之积构成的,那
3、么这个数列的前n项和即可项和即可用此法来求,等比数列的前用此法来求,等比数列的前n项和就是用此法推导的项和就是用此法推导的4裂项相消法裂项相消法把数列的通项拆成两项之差,在求和时中间的一些把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和项可以相互抵消,从而求得其和小题能否全取小题能否全取1(2013沈阳六校联考沈阳六校联考)设数列设数列(1)n的前的前n项和为项和为Sn,则对任意正整数则对任意正整数n,Sn()答案:答案:D答案:答案:C 数列求和的方法数列求和的方法(1)一般的数列求和,应从通项入手,若无通项,先求一般的数列求和,应从通项入手,若无通项,先求通项,然后
4、通过对通项变形,转化为与特殊数列有关或具备通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和某种方法适用特点的形式,从而选择合适的方法求和(2)解决非等差、等比数列的求和,主要有两种思路:解决非等差、等比数列的求和,主要有两种思路:转化的思想,即将一般数列设法转化为等差或等比数转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成列,这一思想方法往往通过通项分解或错位相减来完成不能转化为等差或等比数列的数列,往往通过裂项相不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和消法
5、、错位相减法、倒序相加法等来求和 例例1(2011(2011山东高考山东高考) )等比数列等比数列an中,中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列中的任何两个数不在下表的同一列.分组转化法求和分组转化法求和第一列第一列第二列第二列第三列第三列第一行第一行3210第二行第二行6414第三行第三行9818(1)求数列求数列an的通项公式;的通项公式;(2)若数列若数列bn满足:满足:bnan(1)nln an,求数列,求数列bn的前的前2n项和项和S2n.自主解答自主解答(1)当当a13时,不
6、合题意;时,不合题意;当当a12时,当且仅当时,当且仅当a26,a318时,符合题意;时,符合题意;当当a110时,不合题意时,不合题意因此因此a12,a26,a318.所以公比所以公比q3,故,故an23n1.分组转化法求和的常见类型分组转化法求和的常见类型 (1)若若anbncn,且,且bn,cn为等差或等比数列,为等差或等比数列,可采用分组求和法求可采用分组求和法求an的前的前n项和项和例例2 (2012(2012江西高考江西高考) )已知数列已知数列an的前的前n项和项和Snkcnk(其中其中c,k为常数为常数),且,且a24,a68a3.(1)求求an;(2)求数列求数列nan的前的
7、前n项和项和Tn.错位相减法求和错位相减法求和用错位相减法求和应注意:用错位相减法求和应注意:(1)要善于识别题目类型,特别是等比数列公比为负要善于识别题目类型,特别是等比数列公比为负数的情形;数的情形;(2)在写出在写出“Sn”与与“qSn”的表达式时应特别注意将两的表达式时应特别注意将两式式“错项对齐错项对齐”以便下一步准确写出以便下一步准确写出“SnqSn”的表达式的表达式(3)在应用错位相减法求和时,若等比数列的公比为在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于参数,应分公比等于1和不等于和不等于1两种情况求解两种情况求解2(2013济南模拟济南模拟)已知等比数列已知等
8、比数列an的前的前n项和为项和为Sn,且,且满足满足Sn3nk.(1)求求k的值及数列的值及数列an的通项公式;的通项公式;解:解:(1)当当n2时,由时,由anSnSn13nk3n1k23n1,得等比数列,得等比数列an的公比的公比q3,首项为,首项为2.a1S13k2,k1,数列数列an的通项公的通项公式为式为an23n1.裂项相消法求和裂项相消法求和例例3已知数列已知数列an的前的前n项和为项和为Sn,a11,Snnann(n1)(nN*)(1)求数列求数列an的通项公式;的通项公式;自主解答自主解答(1)Snnann(n1),当,当n2时,时,Sn1(n1)an1(n1)(n2),an
9、SnSn1nann(n1)(n1)an1(n1)(n2),即即anan12.数列数列an是首项是首项a11,公差,公差d2的等差数列,的等差数列,故故an1(n1)22n1,nN*.利用裂项相消法求和应注意利用裂项相消法求和应注意(1)抵消后并不一定只剩下第一项和最后一项,也有抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;可能前面剩两项,后面也剩两项;3(2012(2012“江南十校江南十校”联考联考) )在等比数列在等比数列an中,中,a10, nN*,且,且a3a28,又,又a1、a5的等比中项为的等比中项为16.(1)求数列求数列an的通项公式;的通项公式;解:
10、解:(1)设数列设数列an的公比为的公比为q,由题意可得,由题意可得a316,a3a28,则,则a28,q2.an2n1. 数列求和是高考的重点,题型以解答题为主,主数列求和是高考的重点,题型以解答题为主,主要考查等差、等比数列的求和公式,错位相减法及裂项要考查等差、等比数列的求和公式,错位相减法及裂项相消求和;数列求和常与函数、方程、不等式联系在一相消求和;数列求和常与函数、方程、不等式联系在一起,考查内容较为全面,在考查基本运算、基本能力的起,考查内容较为全面,在考查基本运算、基本能力的基础上又注重考查学生分析问题、解决问题的能力基础上又注重考查学生分析问题、解决问题的能力“大题规范解答大
11、题规范解答得全分得全分”系列之系列之(五五) 利用错位相减法解决数列求和的答题模板利用错位相减法解决数列求和的答题模板 动漫演示更形象,见配套光盘动漫演示更形象,见配套光盘 (1)确定常数确定常数k,求,求an;教你快速规范审题教你快速规范审题1审条件,挖解题信息审条件,挖解题信息2审结论,明解题方向审结论,明解题方向3建联系,找解题突破口建联系,找解题突破口1审条件,挖解题信息审条件,挖解题信息9 22nna 可可化化列列简简数数2审结论,明解题方向审结论,明解题方向12nn 分分析析通通的的特特项项点点3建联系,找解题突破口建联系,找解题突破口22123112222nnnnnT 件件具具,
12、代代入入求求和和: + +条条备备3232222122nnnTnn + +21211122 121124422222nnnnnnnTTnnn : + +教你准确规范解题教你准确规范解题常见失分探因常见失分探因 错位相减时,易漏项或求错项数错位相减时,易漏项或求错项数. 利用利用anSnSn1时,易忽视条件时,易忽视条件n2,即不验证,即不验证a1 是否适合是否适合an . 7292n 第三步:第三步:Sna1b1a2b2anbn的两的两边同乘以公比边同乘以公比q,得,得qSnqa1b1qa2b2qanbn 教你一个万能模板教你一个万能模板 利用错位相减法求数列的前利用错位相减法求数列的前n项和
13、,一般可用以下项和,一般可用以下几步解答:几步解答:第一步:将数列第一步:将数列cn写成两个数写成两个数列的积的形式列的积的形式cnanbn,其中,其中an为等差数列,为等差数列,bn为等比数列为等比数列 第二步:写第二步:写出数列出数列cn的前的前n项和项和Sna1b1a2b2anbn 第六步:反思第六步:反思回顾,查看关回顾,查看关键点,易错点键点,易错点及解题规范及解题规范. .如本题错位相如本题错位相减时,是否有减时,是否有漏项漏项 第四步:两式第四步:两式错位相减得错位相减得(q1)Sn 第五步:等式第五步:等式两边同时除以两边同时除以q1,得,得Sn 教师备选题(给有能力的学生加餐)(给有能力的学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文员个人总结简短500字
- 指定监护人决定书(5篇)
- 科技读书节开幕词(3篇)
- 灭火应急预案大全15篇
- 建筑项目施工合同范本(34篇)
- 北京市海淀区2024−2025学年高二上学期阶段性针对训练(10月) 数学试卷含答案
- 风险整改报告5篇
- DB11T 1500-2017 自然保护区建设和管理规范
- 2023年冷弯型钢资金需求报告
- 2023年建材级纤维素醚资金申请报告
- 半导体工艺原理-硅衬底材料制备工艺(贵州大学)概要
- A-Fable-For-Tomorrow明天的寓言课件
- 认识实习任务书土木工程
- 我国直播带货中的法律问题和行为规制,经济法论文
- GB/T 41782.1-2022物联网系统互操作性第1部分:框架
- GB/T 6500-2008毛绒纤维回潮率试验方法烘箱法
- GB/T 38883-2020无损检测主动式红外热成像检测方法
- GB/T 31288-2014铁尾矿砂
- GB/T 18488.1-2001电动汽车用电机及其控制器技术条件
- CRRT护理考核试题及答案
- 西方马克思主义哲(共74张PPT)
评论
0/150
提交评论