利用法向量解立体几何题7_第1页
利用法向量解立体几何题7_第2页
利用法向量解立体几何题7_第3页
利用法向量解立体几何题7_第4页
利用法向量解立体几何题7_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、利用法向量解立体几何题一、运用法向量求空间角1.向量法求空间两条异面直线a, b所成角,只要在两条异面直线a, b上各任取一个向量,则角<>=或-,因为是锐角,所以cos=, 不需要用法向量。nA2、运用法向量求直线和平面所成角设平面的法向量为=(x, y, z),则直线AB和平面所成的角的正弦值为sin= cos(-) = |cos<, >| = 3、运用法向量求二面角设二面角的两个面的法向量为,则<>或-<>是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<>是所求,还是-<>是所求角。二、运用法向量求空间距

2、离1、求两条异面直线间的距离 设异面直线a、b的公共法向量为,在a、b上任取一点A、B,则异面直线a、b的距离d =AB·cosBAA= 其中,的坐标可利用a、b上的任一向量,及的定义得 解方程组可得。2、求点到面的距离求A点到平面的距离,设平面的法向量法为,在内任取一点B,则A点到平面的距离为d =,的坐标由与平面内的两个不共线向量的垂直关系,得到方程组3、求直线到与直线平行的平面的距离求直线a到平面的距离,设平面的法向量法为,在直线a上任取一点A,在平面内任取一点B,则直线a到平面的距离d = 4、求两平行平面的距离设两个平行设平面、的公共法向量法为,在平面、内各任取一点A、B,

3、则平面到平面的距离d = 三、证明线面、面面的平行、垂直关系设平面外的直线a和平面、,两个面、的法向量为,则四、应用举例:例1:(04年高考广东18)如右下图,在长方体ABCDA1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1.(1) 求二面角CDEC1的正切值;(2) 求直线EC1与FD1所成的余弦值. 解:(I)以A为原点,分别为x轴,y轴,z轴的正向建立空间直角坐标系,则D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2)于是,设法向量与平面C1DE垂直,则有(II)设EC1与F

4、D1所成角为,则例3:(04江苏高考18)在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.()求直线AP与平面BCC1B1所成的角正弦值的大小()设O点在平面D1AP上的射影是H,求证:D1HAP;()求点P到平面ABD1的距离.解: ()如图建立坐标系D-ACD1, 棱长为4A(4,0,0),B(4,4,0),P(0,4,1) = (-4, 4, 1) , 显然=(0,4,0)为平面BCC1B1的一个法向量,直线AP与平面BCC1B1所成的角的正弦值sin= |cos<, >|=为锐角,直线AP与平面BCC1B1所成的角为arcsin() 设平面ABD1的法向量为=(x, y, 1),=(0,4,0),=(-4,0,4)由, 得=(1, 0, 1),点P到平面ABD1的距离 d = 例4:在长、宽、高分别为2,2,3的长方体ABCD-A1B1C1D1中,O是底面中心,求A1O与B1C的距离。解:如图,建立坐标系D-ACD1,则O(1,1,0),A1(2,2,3),C(0,2,0) 设A1O与B1C的公共法向量为,则 A1O与B1C的距离为 d =例5:在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1、C1D1的中点,求A1到面BDFE的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论