




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、几何画板与初中数学教学整合的实践及体会内容摘要: 随着信息技术的发展,如何构建信息技术与数学教学整合的教学模式是一个新的问题,使用计算机技术能使抽象的数学问题变得具体、形象,使复杂的“数”通过直观的“形”来表示,能为数学活动提供探索的平台,为数学知识的建构提供技术支持。本文就如何将几何画板软件与初中数学教学有机地结合起来,从而达到计算机信息技术与数学教学活动融为一体的效果谈一些实践方法,提出了自己的一点看法。关键词: 几何画板 初中数学教学 整合 动态展示一、问题的提出:面对21世纪的挑战,学生数学方面发展的愿望和能力最重要的基础之一就是现代信息技术与新的数学课程理念的融合,现代信息技术为数学
2、课程改革提供了切实可行的方案、方法和工具,营造了新的数学学习环境。新课程标准指出:“现代信息技术要改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。”目前,现代信息技术在教学中的应用已成为一个热点问题。因此,作为教育的内容及方式也必须随着改变,同时对教师也提出了更高的要求。随着信息技术普及的速度不断加快,计算机技术与学科教学的整合,也是一个热门话题,而计算机与数学教学的整合,不能完全照搬其它学科成功经验。数学学科的自身的特点限制了不可能在课堂上大量引入影视资料和音乐,不可能一面分析数学问题一面播放着音乐,也不能来一个从黑板到屏幕的大搬家。事实上数学是集严密性、逻辑
3、性、精确性、创造性和想象力于一身的科学,数学教师在黑板上的作图、证明、解题的过程本身就是一个不可缺少示范教学过程,同时数学是一个相对完备、封闭王国,对数学定义来不得半点拓宽,对定理来不得半点变动。因此怎样将高科技的计算机技术与初中数学教学有机结合在一起,起到促进教育现代化的进程,一直是一个难题。近几年本人一直努力在做计算机辅助数学教学的实践,对“计算机与数学学科整合”这一课题尝试进行研究,通过两三年时间的计算机辅助教学的尝试,尤其在数学教学中,使用了全国中小学计算机教育研究中心推荐的“几何画板”软件,辅助数学教学。这一软件的最大特点是使用十分方便,而功能特别强大,因而效果比较明显。二、几何画板
4、与初中数学教学整合的可行性 l、几何画板的特点和功能。作为计算机软件-几何画板,它集图象的制作、动画、测算、文字输入,编辑等为一体,为“几何模型”的构建提供了一个有效的场所,结合多媒体信息输(出)入,储存量大,可进行交互的功能,是实现“数形结合”思想的一个有效的辅助教学工具。 几何画板为“数形结合”创造了一条便捷的通道,它不仅对几何模型的绘制提供信息。同时,可以解决学生难以绘制的图形,而且提供了图形“变换”的动感,丰富多彩的“动画”模型,给学生一种耳目一新的视觉感受,使学生从画面中去寻求到问题解决的方法和依据,并从画面中去认清问题的本质,另外其丰富的测算功能使得对问题的观察,试验和归纳成为现实
5、。 2、几何画扳操作的实用性。作为一个不懂电脑操作的教师或学生只需短暂地培训就可以上机操作,并且根据实际需求进行随意编缉和整理,有很强的实用性,既减轻教师的工作负担,改变教学环境又为问题的有效解决提供便利。 3、利用几何画板的优势,增大信息的容量。几何画板显示画面的快捷、容量大、可储存,因此它可以提高单位时间的利用率,为知识信息量的增大提供了空间,数学学习必须因材施教。传统教学中由于信息量较小,不能满足各类学生不同的需求,给学生的全面发展带来不利因素,而几何画板的实施可以改变这种现状,因此在教师备课时充分备好材料,以大信息量的储备来满足学生的需求,使学生根据自身的需要进行查阅,进行学习。三、几
6、何画板与初中数学教学整合的实践: 对计算机与数学教学的整合的一般理解是:运用现代多媒体技术,从多方面、多角度来解决教学中的重、难点,开拓学生的视野,开发学生的思维。从多年工作的情况来看,目前多媒体技术用于教学中主要的是“视、听”,这对初中数学的辅助作用远远低于其它学科。而“信息技术与数学教学整合的教学模式”指出了一条现代技术辅助学科教学新的、更宽广的道路。我个人对“整合”的理解是:先进的计算机技术与学科教学有机的结合在一起,充分发挥技术的优势和作用,提高教学效率、突破重点难点,甚至在技术的支持下改革现有的教学方法、教学模式、教学内容和教学观念,把各种技术手段完美地适当地融合到课程中就象在教学中
7、使用黑板和粉笔一样自然、流畅。这里就将本人在近几年的初中数学课堂教学中如何将几何画板软件与数学课堂教学有机结合的一些做法分几个方面作一介绍:1、利用几何画板辅助教师讲授基础知识,帮助学生理解基本概念概念是一事物区别于它事物的本质属性,数学概念来源于实际,是对现实世界中事物的数量关系和物质形态在质上的抽象和概括。在教学中讲授或学习概念常常需要借助实物形式或物质的形态进行直观性表述。几何中的概念,如“中点”,如果离开了具体的实物形态即图形的作用,那么其本质含义就无法揭示和表现出来,因而,图形成为说明概念的“形态式”语言。平面几何教学难,难在于其抽象性。学生由于对概念的“形态式”语言的表示出现问题,
8、故而导致对概念的理解产生了错误。学生不能把概念转换为图形语言,从图形中理解抽象的概念,学习也就望而却步。为此,在几何教学中,正确地教会学生识别几何图形,教懂学生作图,成为突破几何教学难的切口。在入门教学中,教师往往要注重抓好几何图形的识图教学和作图教学,注重识图、解意能力的培养,并长期贯穿于几何教学活动中,以使学生深化和理解基本概念、认识和掌握基本知识。传统教学模式下,教师要利用三角板、直尺等教学工具用粉笔在黑板上作出很多有关教学内容的具有代表性的图形,并结合学生生活的具体实际,借助日常生活中学生熟知的经验知识,对典型图形进行分析、描述,引导学生认真观察、辨认,启发学生比较、联想。这样的教学无
9、疑对学生认识图形、理解概念、奠定学习几何的形态式语言基础、建立起图形与概念之间的本质联系、深化对概念的认识有着重要的作用。但利用计算机的工具型应用软件几何画板来辅助教学,可以带来“出示图形更灵活,展现的图形更丰富,而且规范、直观”等诸多好处。比方说,要让学生正确理解等腰三角形的概念,并能在不同的情况下正确识别之,我们绘制了具有代表性的底在水平线上和在垂直线上(如图所示)的等腰三角形和一般三角形让学生观察、分辨、识别。由于用几何画板操作起来很容易,因此,用以引导学生理解等腰三角形的定义,把握概念的实质,是很方便的。此外,采取“移动顶点或对原图进行变换”等方式很容易对绘制好的图形进行处理,因而,可
10、以让学生对处于不同位置上的等腰三角形都得到直观的认识和了解。这种利用几何画板的基本功能来表现概念的“形态”的做法能有效加深学生对概念的理解和认识,避免或减少学生因图形的问题而出现错误。又如,对“一次函数y=kx+b(k0)的性质”的学习,如果学生不清楚y=kx+b(k0)在k0或k<0时表示了什么样子的图像,不知道b的取值对函数图像的作用和影响,那么根据图像确定k、b的取值范围,学生解起来就会觉得棘手。利用几何画板,可以很容易地让学生直观地看到一次函数y=kx+b(k0)的图像,通过上下来回拖动下图中的K、B两点,教师不用说什么,学生也能归纳出一次函数的性质,并于认识上有深层的理解,完成
11、基础问题的解答。这样的利用几何画板辅助教学,能加强学生的记忆和理解,为学生更好地学习提供帮助。2、利用几何画板动态展示教学内容或数学问题,把抽象的数学教学变得形象、直观动态展示教学内容或数学问题,能够化抽象为具体,化具体为形象,因而,使教学更加直观、生动,有利于激发学生的学习兴趣,增强教学的趣味性。如:在三角形的中位线教学中,对四边形各边中点所围成的四边形是特殊的四边形,且与原四边形对角线的有一定关系这一问题的理解,内容比较多,可用几何画板软件制作如图所示的动画演示效果(如图):学生对四边形ABCD的变化过程中四边形EFGH的特征能直观感受到,并且加深了印象,而这个效果与教师简单把结论教给学生
12、或不断画图来说明都是不可比较的,还有圆与圆的位置关系,正多边形等一些几何知识的教学中,应用几何画板的动态展示效果能把抽象的数学问题和知识变得更形象、直观,让学生对知识有更深层次的理解,也大大降低了教师教学的难度。3、利用几何画板搭建验证问题和揭示问题本质的技术平台(1)、为学生验证问题搭建技术平台,使几何画板成为“数学实验室”在解决数学问题中,由于问题本身的抽象性和推理的复杂性,花费了很多时间都未能把问题证明出来,此时,产生对问题的疑义并对问题真实性进行验证是一种极为可能并欲想去做的事。验证一方面可以缓解心理紧张和心理焦虑,变换思维角度,对问题进行再认识;另一方面可以调节心理平衡,重塑解题信心
13、。学生在通过实验验证得出问题是真实的时,将会激发起信心,增强解决问题的动力。从而,有效地克服推理过程中产生的心理障碍。如学生证明:“三角形中,如果有两个角的平分线相等,则这个三角形是等腰三角形。”的问题时,由于该题目的证明思路很不容易被找到,学生尝试用多种方法思考证不出来时,提出了“老师,你让我们证明的题目是正确的吗?”这样的问题来。我提示学生用几何画板对题目进行验证。学生作出了图形,并测量了有关的线段的长度,当通过拖动如图所示的M、N两点,在找准使AM与BN相等的点时,学生得到AC与BC的值总是相等的。于是,在验证了结论是正确的这样一种良好心理支撑下,学生兴奋的告诉说:“老师,题目的结论是正
14、确的,我要再试试如何证明。”验证不仅在学生解题时有用,对新知识的教学也很有用。如学习“三角形三内角和为1800”定理时,教师可以让学生绘制一个三角形,测量出每个角的角度数和三内角和的值,并拖动三角形的任一个顶点,观察三个内角之和是否仍保持为1800。这样在感性认识上首先建立起认知新知识的起点,为推理论证的顺利开展建立了信心。再如勾股定理、圆的切割线定理、相交弦定理等重要数学定理的证明通过这种骓的方法都能起到很好的教学效果。(2)、揭示知识之间的内在本质,为学生体验知识之间的关系提供“活动场”。静态的图形、图像使原本相互联系的知识割裂开来,失去了知识之间的内存联系,会使学生只注意事物的局部而忽视
15、整体。“几何画板”能动态地展示问题的特点,可以克服静态图形的这一缺陷。比如,在讨论二次函数y=ax2+bx+c(a0)或y=a(x+h)2+k(a0)中,二次函数图象与常量a、b、c、h、k之间的关系时。可作以下设计:1. 在演示画面中,实时显示抛物线的顶点坐标、与y轴的交点坐标和对称轴。2. 拖动有向线段a,改变a的取值。观察抛物线开口方向及大小。3. 归纳:当a>0时,开口向上,开口大小随a的增大而变小;当a<0时,开口向下,开口大小随a的减小而变小;当a=0时,二次函数退化成为一次函数y=kx+b。(说明:一次函数不是特殊的二次函数)4. 拖动有向线段c,改变c的取值。观察可
16、发现抛物线随c的值变大、变小而升高或降低。并可观察抛物线与y轴交点的纵坐标和c的取值相等,从而得到抛物线y=ax2+bx+c与y轴交于点(0,c)。5. 拖动有向线段h、k,改变h、k的取值。观察得抛物线随h、k的变化而左右平移或上下平移。顶点坐标是(h、k),也就是(-b/2a,(4ac-b2)/4a)。从而归纳出抛物线的顶点坐标与对称轴和h、k的关系,并将实验观察所得结论,进行推理论证。4、利用几何画板给学生提供猜想和探索的技术环境猜想是在没有现存结论情况下根据问题的条件推断可能存在的结果的一种直觉思维形式。利用几何画板可以为教师培养学生探究性地建构知识提供环境,为学生进行猜想提供技术平台
17、,从而让学生在探索中学习,在探究中自主地建构知识,提出猜想的结论,实现创新。如学习了“相交弦定理”后,教师可以这样提出问题,启发学生去进行探索:“如图所示,根据相交弦定理,我们知道PAPBPCPD,那么,如果P点在o外,PAPBPCPD这个结论还成立吗?特别地如果P点在过A、B、C、D中某一点的切线上时,结论又怎样?”。此问题的探索大致可以按下述四个步骤进行:1、测量PA、PB、PC、PD的值,并计算PAPB,PCPD;2、用鼠标将P点从圆内拖到圆外;3、观察PAPB,PCPD的值的变化情况,仔细查看当P点在圆外变动时变化了的PAPB,PCPD的值是否相等。4、得到结论。对于切线位置,可以过某
18、一点(如C点)作圆的一条切线(CM),在该切线上任取一点H(H点最好不与C点重合),然而,用选择工具选择P点按住Shift键后再选H点,使两点都被选中,用鼠标选择【编辑】下的【操作类按钮】下的【移动】命令,为从P点移动到H点设置一个运动按钮,当双击按钮时,P会从它的当前位置移动到H点,并使P、H两点重合。通过观察PAPB,PCPD的值,可确立两者的值的关系,得到结论。5、利用几何画板,让学生自主开展“研究数学”的活动几何画板是一个动态讨论问题的工具,对发展学生的思维能力、开发智力、促进素质教育有着不可忽视的作用,用几何画板与学生共同探讨问题,探求未知的结论,可以开阔思路,培养能力,提高数学素养
19、。 让学生学会利用几何画板去研究数学问题,从面找到解决数学问题的方法,在数学习题的教学中有着重要的意义,对提高学生自主探究的学习能力,培养学生的数学思维能力能起到不同寻常的作用。例如,习题:在边长为a的正方形ABCD中,对角线AC、BD相交于点O,正方形OFEG与边BC,CD相交于点N、M,求四边形ONCM的面积。该问题解决关键在于得出四边形ONCM的面积与三角形OBC的面积相等,引导学生注意四边形OFEG的运动特征,让学生应用几何画板的动画特征,转动正方形OFEG,观察四边形ONCM面积的变化,从而探究出S四边形ONCM=SOBC的结论;四、关于几何画板与初中数学教学整合几点体会经过几年的教学实践,对计算机信息技术在初中数学教学中的应用,如何将计算机技术与数学教学有机的结合起来有了一定的认识。l、几何画板是基础教育中新的认知工具, “认知工具”是指:不但是一种支持,指引,扩充使用者思维的心智设备,而且还是一种计算设备。计算机信息技术为学生传递着大量的信息,学习只有在学生的主动参与下才有可能发生。而学生积极参与是由一系列的学习活动所激发的,学习活动也是由一系列的教学事件和教学技术进行控制和支持的。几何画板这一认知工具是学生学习的一种外部条件,它可以激发起学生的内部认知工具的启动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轻量级图数据库引擎NeuroDB应用
- 2025年度文化演出合同解除终止范本
- 体育场馆用地转让居间
- 2025年度户外广告牌钢结构彩钢棚定制与安装服务合同
- 2025年度婚礼用品租赁合同到期时间及续租优惠
- 2025年度婚前协议:基于父母首付的购房合同及婚后财产分割协议
- 2025年度合伙企业合伙份额转让与大数据分析服务协议
- 2025年度劳动合同必须包含的员工离职与接续就业协议
- 2025年度工伤私了赔偿协议标准文本及解析
- 社会办医院章程范本
- 杭州市淳安县国有企业招聘笔试真题2024
- 安徽省芜湖市2024-2025学年第一学期期末考试七年级语文试卷(含答案)
- 2024政府采购评审专家考试真题库及答案
- 2025《国家安全教育》教学大纲
- 部编版语文小学五年级下册第一单元集体备课(教材解读)
- 课题申报讲座课件
- 思想道德与法治课件:第四章 第二节 社会主义核心价值观的显著特征
- 四步创业法:创业必备知识点课件
- 小升初总复习——汉字
- 商铺装修竣工验收表(营运发存)
- 陕旅版四年级下册英语全册教案及各单元知识点总结
评论
0/150
提交评论