下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、集合与简易逻辑基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。一、集合与简易逻辑1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P、Q为两个非空实数集合,定义集合P+Q=,若,则P
2、+Q中元素的有_个。(答:8)(2)设,那么点的充要条件是_(答:);(3)非空集合,且满足“若,则”,这样的共有_个(答:7)2.遇到时,你是否注意到“极端”情况:或;同样当时,你是否忘记的情形?要注意到是任何集合的子集,是任何非空集合的真子集。如集合,且,则实数_.(答:)3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为 如满足集合M有_个。(答:7)4.集合的运算性质:;CUACUB; ; CUAB; ;.如设全集,若,则A_,B_.(答:,)5. 研究集合问题,一定要理解集合的意义抓住集合的代表元素。如:函数的定义域;函数的值域;函数图象上的点集,如(1)
3、设集合,集合N,则_(答:);(2)设集合,则_(答:)6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如已知函数在区间上至少存在一个实数,使,求实数的取值范围。(答:)。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。如在下列说法中: “且”为真是“或”为真的充分不必要条件;“且”为假是“或”为真的充分不必要条件;“或”为真是“非”为假的必要不充分条件;“非”为真是“且”为假的必要不充分条件。其中正确的是_(答:
4、)。若原命题是“若p则q”,则逆命题为“若q则p”;否命题为“若p 则q” ;逆否命题为“若q 则p”。提醒:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。但原命题与逆命题、否命题都不等价;(2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”;(3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“”判断其真假,这也是反证法的理论依据。(5)哪些命题宜用反证法?如(1)“在ABC中,若C=900,则A、B都是
5、锐角”的否命题为(答:在中,若,则不都是锐角);(2)已知函数,证明方程没有负数根。9.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若,则A是B的充分条件;若,则A是B的必要条件;若A=B,则A是B的充要条件。如(1)给出下列命题:实数是直线与平行的充要条件;若是成立的充要条件;已知,“若,则或”的逆否命题是“若或则”;“若和都是偶数,则是偶数”的否命题是假命题 。其中正确命题的序号是_(答:);(2)设命题p:;命题q:。若p是q的必要而不充分的条件,则实数a的取值范围是 (答:)10.
6、 一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为的形式,若,则;若,则;若,则当时,;当时,。如已知关于的不等式的解集为,则关于的不等式的解集为_(答:)11. 一元二次不等式的解集(联系图象)。尤其当和时的解集你会正确表示吗?设,是方程的两实根,且,则其解集如下表:或或RRR如解关于的不等式:。(答:当时,;当时,或;当时,;当时,;当时,)12. 对于方程有实数解的问题。首先要讨论最高次项系数是否为0,其次若,则一定有。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?如:(1)对一切恒成立,则的取值范围是_(答:);(2)关于的方程有解的条件是什么?(答:,其中为的值域),特别地,若在内有两个不等的实根满足等式,则实数的范围是_.(答:)13.一元二次方程根的分布理论。方程在上有两根、在上有两根、在和上各有一根的充要条件分别是什么?(、)。根的分布理论成立的前提是开区间,若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,再令和检查端点的情况如实系数方程的一根大于0且小于1,另一根大于1且小于2,则的取值范围是_(答:(,1)14.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程的两个根即为二次不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年VGA画面处理器项目投资价值分析报告
- 2024年阻力伞项目可行性研究报告
- 2024年工海马毛项目可行性研究报告
- 办公软件在提高工作效率中的作用
- 个人护理品行业发展趋势报告
- D595-生命科学试剂-MCE
- 电子商务物流仓储技术解析
- Bupranolol-hydrochloride-生命科学试剂-MCE
- 家庭理财规划入门
- 葡萄酒市场分析与标牌策略
- 福建省泉州市南安市2023-2024学年九年级上学期期末数学试题(含解析)
- 疼痛科护士的职业规划与发展空间
- 医院人文培训课件
- 自考《马克思主义基本原理概论》复习资料
- 2023年瑞安市事业单位笔试真题
- 《项脊轩志》公开课课件【一等奖】
- 班级工作计划班级现状分析报告
- 项目一-旅游概述-(旅游概论课件完美版)
- 职工食堂餐饮服务投标方案(技术标)
- 矿场拆除施工方案
- 03 写景散文阅读训练-20232024学年七年级语文上册知识(考点)梳理与能力训练(解析)
评论
0/150
提交评论