信息论与编码(第二版)曹雪虹(最全版本)答案_第1页
信息论与编码(第二版)曹雪虹(最全版本)答案_第2页
信息论与编码(第二版)曹雪虹(最全版本)答案_第3页
信息论与编码(第二版)曹雪虹(最全版本)答案_第4页
信息论与编码(第二版)曹雪虹(最全版本)答案_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选文档信息论与编码(其次版)曹雪虹答案其次章2.1一个马尔可夫信源有3个符号,转移概率为:,画出状态图并求出各符号稳态概率。解:状态图如下状态转移矩阵为:设状态u1,u2,u3稳定后的概率分别为W1,W2、W3由得计算可得2.2 由符号集0,1组成的二阶马尔可夫链,其转移概率为:=0.8,=0.2,=0.2,=0.8,=0.5,=0.5,=0.5,=0.5。画出状态图,并计算各状态的稳态概率。解: 于是可以列出转移概率矩阵:状态图为: 设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4 有 得 计算得到2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1

2、) “3和5同时消灭”这大事的自信息;(2) “两个1同时消灭”这大事的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。解:(1) (2)(3)两个点数的排列如下:111213141516212223242526313233343536414243444546515253545556616263646566共有21种组合:其中11,22,33,44,55,66的概率是 其他15个组合的概率是(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:(5)2-4 2.

3、5 居住某地区的女孩子有25%是高校生,在女高校生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。假如我们得知“身高160厘米以上的某女孩是高校生”的消息,问获得多少信息量?解:设随机变量X代表女孩子学历Xx1(是高校生)x2(不是高校生)P(X)0.250.75设随机变量Y代表女孩子身高Yy1(身高>160cm)y2(身高<160cm)P(Y)0.50.5已知:在女高校生中有75%是身高160厘米以上的即:求:身高160厘米以上的某女孩是高校生的信息量即:2.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时

4、,该消息所包含的信息量又是多少?解:1)因圆点之和为3的概率该消息自信息量2)因圆点之和为7的概率该消息自信息量2.7 设有一离散无记忆信源,其概率空间为 (1)求每个符号的自信息量 (2)信源发出一消息符号序列为202 120 130 213 001 203 210 110 321 010 021 032 011 223 210,求该序列的自信息量和平均每个符号携带的信息量解:同理可以求得由于信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和就有:平均每个符号携带的信息量为bit/符号2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不

5、同的消息,例如:0, 1, 2, 3 八进制脉冲可以表示8个不同的消息,例如:0, 1, 2, 3, 4, 5, 6, 7二进制脉冲可以表示2个不同的消息,例如:0, 1假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量 八进制脉冲的平均信息量二进制脉冲的平均信息量所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。2-9 “” 用三个脉冲 “”用一个脉冲(1) I()= I() (2) H= 2-10 (2) P(黑/黑)= P(白/黑)= H(Y/黑)= (3) P(黑/白)= P(白/白)= H(Y/白)= (4) P(黑)= P(白)= H(Y)= 2.11

6、有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。(1)假如仅对颜色感爱好,则计算平均不确定度(2)假如仅对颜色和数字感爱好,则计算平均不确定度(3)假如颜色已知时,则计算条件熵解:令X表示指针指向某一数字,则X=1,2,.,38 Y表示指针指向某一种颜色,则Y=l绿色,红色,黑色 Y是X的函数,由题意可知(1)bit/符号(2)bit/符号(3)bit/符号2.12 两个试验X和Y,X=x1 x2 x3,Y=y1 y2 y3,l联合概率为(1) 假如有人告知你X和Y的试验结果,你得到

7、的平均信息量是多少?(2) 假如有人告知你Y的试验结果,你得到的平均信息量是多少?(3) 在已知Y试验结果的状况下,告知你X的试验结果,你得到的平均信息量是多少?解:联合概率为 YXy1y2y3 x17/241/240 x21/241/41/24 x301/247/24 =2.3bit/符号X概率分布Xx1x2x3P8/248/248/24bit/符号 Y概率分布是 =0.72bit/符号Yy1y2y3P8/248/248/242.13 有两个二元随机变量X和Y,它们的联合概率为Y Xx1=0x2=1y1=01/83/8y2=13/81/8并定义另一随机变量Z = XY(一般乘积),试计算:(

8、1) H(X), H(Y), H(Z), H(XZ), H(YZ)和H(XYZ);(2) H(X/Y), H(Y/X), H(X/Z), H(Z/X), H(Y/Z), H(Z/Y), H(X/YZ), H(Y/XZ)和H(Z/XY);(3) I(X;Y), I(X;Z), I(Y;Z), I(X;Y/Z), I(Y;Z/X)和I(X;Z/Y)。解:(1)Z = XY的概率分布如下:(2)(3)2-14 (1) P(ij)= P(i/j)= (2) 方法1: = 方法2: 2-15P(j/i)= 2.16 黑白传真机的消息元只有黑色和白色两种,即X=黑,白,一般气象图上,黑色的消灭概率p(黑)

9、0.3,白色消灭的概率p(白)0.7。(1)假设黑白消息视为前后无关,求信源熵H(X),并画出该信源的香农线图(2)实际上各个元素之间是有关联的,其转移概率为:P(白|白)0.9143,P(黑|白)0.0857,P(白|黑)0.2,P(黑|黑)0.8,求这个一阶马尔可夫信源的信源熵,并画出该信源的香农线图。(3)比较两种信源熵的大小,并说明缘由。解:(1)bit/符号P(黑|白)=P(黑)P(白|白)P(白) P(黑|黑)P(黑)P(白|黑)P(白)(2)依据题意,此一阶马尔可夫链是平稳的(P(白)0.7不随时间变化,P(黑)0.3不随时间变化)0.512bit/符号2.17 每帧电视图像可以

10、认为是由3Í105个像素组成的,全部像素均是独立变化,且每像素又取128个不同的亮度电平,并设亮度电平是等概消灭,问每帧图像含有多少信息量?若有一个广播员,在约10000个汉字中选出1000个汉字来口述此电视图像,试问广播员描述此图像所广播的信息量是多少(假设汉字字汇是等概率分布,并彼此无依靠)?若要恰当的描述此图像,广播员在口述中至少需要多少汉字?解:1)2)3)2.20 给定语音信号样值X的概率密度为,求Hc(X),并证明它小于同样方差的正态变量的连续熵。解2.24 连续随机变量X和Y的联合概率密度为:,求H(X), H(Y), H(XYZ)和I(X;Y)。(提示:)解:2.25

11、 某一无记忆信源的符号集为0, 1,已知P(0) = 1/4,P(1) = 3/4。(1) 求符号的平均熵;(2) 有100个符号构成的序列,求某一特定序列(例如有m个“0”和(100 - m)个“1”)的自信息量的表达式;(3) 计算(2)中序列的熵。解:(1)(2) (3) 2-26 P(i)= P(ij)= H(IJ)= 2.29 有一个一阶平稳马尔可夫链,各Xr取值于集合,已知起始概率P(Xr)为,转移概率如下图所示 j i1231231/22/32/31/401/31/41/30(1) 求的联合熵和平均符号熵(2) 求这个链的极限平均符号熵(3) 求和它们说对应的冗余度解:(1)符号

12、X1,X2的联合概率分布为12311/41/81/821/601/1231/61/12012314/245/245/24X2的概率分布为那么=1.209bit/符号X2X3的联合概率分布为12317/247/487/4825/3605/1235/365/120那么=1.26bit/符号/符号所以平均符号熵符号(2)设a1,a2,a3稳定后的概率分布分别为W1,W2,W3,转移概率距阵为由 得到 计算得到又满足不行约性和非周期性/符号(3)/符号 /符号 /符号 2-30 (1) 求平稳概率 P(j/i)= 解方程组 得到 (2) 信源熵为: 2-31 P(j/i)= 解方程组 得到W1= ,

13、W2= , W3= 2.32 一阶马尔可夫信源的状态图如图213所示,信源X的符号集为(0,1,2)。(1)求信源平稳后的概率分布P(0),P(1),P(2)(2)求此信源的熵(3)近似认为此信源为无记忆时,符号的概率分布为平稳分布。求近似信源的熵H(X)并与进行比较解:依据香农线图,列出转移概率距阵令状态0,1,2平稳后的概率分布分别为W1,W2,W3 得到 计算得到由齐次遍历可得符号 由最大熵定理可知存在极大值或者也可以通过下面的方法得出存在极大值: 又所以当p=2/3时0<p<2/3时2/3<p<1时所以当p=2/3时存在极大值,且符号所以2-33 (1) 解方程

14、组: 得p(0)=p(1)=p(2)= (2) (3) 当p=0或p=1时 信源熵为0练习题:有一离散无记忆信源,其输出为,相应的概率为,设计两个独立的试验去观看它,其结果分别为,已知条件概率:P(y1|x)01012101/2111/2P(y2|x)01012110001(1) 求和,并推断哪一个试验好些(2) 求,并计算做Y1和Y2两个试验比做Y1和Y2中的一个试验可多得多少关于X的信息(3) 求和,并解释它们的含义解:(1)由题意可知 Y1X0101/40101/421/41/4 Y2X0101/4011/40201/2P(y1=0)=p(y1=1)=1/2 p(y2=1)=p(y2=1

15、)=1/2=0.5bit/符号符号>所以其次个试验比第一个试验好P(y1y2x)0001101101/40001001/40201/401/4(2)由于Y1和Y2 相互独立,所以P(y1y2|x)000110110100010010201/201/2y1y200011011p1/41/41/41/4bit/符号=1.5bit/符号由此可见,做两个试验比单独做Y1可多得1bit的关于X的信息量,比单独做Y2多得0.5bit的关于X的信息量。(3)=1.5-1=0.5bit/符号 表示在已做Y2的状况下,再做Y1而多得到的关于X的信息量同理可得=1.5-0.5=1bit/符号表示在已做Y1的

16、状况下,再做Y2而多得到的关于X的信息量欢迎下载!第三章3.1 设二元对称信道的传递矩阵为(1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y);(2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解:1)2) 其最佳输入分布为3-2某信源发送端有2个符号,i1,2;,每秒发出一个符号。接受端有3种符号,j1,2,3,转移概率矩阵为。(1) 计算接受端的平均不确定度;(2) 计算由于噪声产生的不确定度;(3) 计算信道容量。解:联合概率XY0则Y的概率分布为Y(1)取2为底(2)取2为底取e为底= 03.3 在有扰离散信道上传输

17、符号0和1,在传输过程中每100个符号发生一个错误,已知P(0)=P(1)=1/2,信源每秒内发出1000个符号,求此信道的信道容量。解:由题意可知该二元信道的转移概率矩阵为:为一个BSC信道所以由BSC信道的信道容量计算公式得到:3.4 求图中信道的信道容量及其最佳的输入概率分布.并求当=0和1/2时的信道容量C的大小。X0 Y01112211解: 信道矩阵P=,此信道为非奇异矩阵,又r=s,可利用方程组求解 = (i=1,2,3)解得 所以 C=log=log20+2×2(1-)log(1-)+=log1+21-H()=log1+2而 (j=1,2,3)得所以 P(a1)=P(b

18、1)=当=0时,此信道为一一对应信道,得 C=log3, 当=1/2时,得 C=log2, ,3.5 求下列二个信道的信道容量,并加以比较(1) (2)其中p+=1解:(1)此信道是准对称信道,信道矩阵中Y可划分成三个互不相交的子集 由于集列所组成的矩阵,而这两个子矩阵满足对称性,因此可直接利用准对称信道的信道容量公式进行计算。C1=logr-H(p1 p2 p3)-其中r=2,N1=M1=1-2 N2= M2=4 所以C1=log2-H(,p-,2)-(1-2)log(1-2)-2log4=log2+()log()+(p-)log(p-)+2log2-(1-2)log(1-2)-2log4=

19、log2-2log2-(1-2)log(1-2)+()log()+(p-)log(p-)=(1-2)log2/(1-2)+()log()+(p-)log(p-)输入等概率分布时达到信道容量。(2)此信道也是准对称信道,也可接受上述两种方法之一来进行计算。先接受准对称信道的信道容量公式进行计算,此信道矩阵中Y可划分成两个互不相交的子集,由子集列所组成的矩阵为,这两矩阵为对称矩阵 其中r=2,N1=M1=1-2 N2=M2=2,所以C=logr-H(-,p-,2,0)-=log2+(-)log(-)+(p-)log(p-)+2log2-(1-2)log(1-2)-2log2=log2-(1-2)l

20、og(1-2)+( -)log(-)+(p-)log(p-)=(1-2)log2/(1-2)+2log2+(-)log(-)+(p-)log(p-)=C1+2log2输入等概率分布(P(a1)=P(a2)=1/2)时达到此信道容量。比较此两信道容量,可得C2=C1+2log23-6 设有扰离散信道的传输状况分别如图317所示。求出该信道的信道容量。解:对称信道取2为底 bit/符号3-7 (1) 条件概率 ,联合概率,后验概率 , ,(2) H(Y/X)= (3)当接收为y2,发为x1时正确,假如发的是x1和x3为错误,各自的概率为:P(x1/y2)=,P(x2/y2)=,P(x3/y2)=其

21、中错误概率为:Pe=P(x1/y2)+P(x3/y2)=(4)平均错误概率为(5)仍为0.733(6)此信道不好 缘由是信源等概率分布,从转移信道来看 正确发送的概率x1-y1的概率0.5有一半失真 x2-y2的概率0.3有失真严峻 x3-y3的概率0 完全失真(7)H(X/Y)=3. 8 设加性高斯白噪声信道中,信道带宽3kHz,又设(信号功率+噪声功率)/噪声功率=10dB。试计算该信道的最大信息传输速率Ct。解:3. 9 在图片传输中,每帧约有2.25Í106个像素,为了能很好地重现图像,能分16个亮度电平,并假设亮度电公平概分布。试计算每分钟传送一帧图片所需信道的带宽(信噪功

22、率比为30dB)。解:3-10 一个平均功率受限制的连续信道,其通频带为1MHZ,信道上存在白色高斯噪声。(1)已知信道上的信号与噪声的平均功率比值为10,求该信道的信道容量;(2)信道上的信号与噪声的平均功率比值降至5,要达到相同的信道容量,信道通频带应为多大?(3)若信道通频带减小为0.5MHZ时,要保持相同的信道容量,信道上的信号与噪声的平均功率比值应等于多大?解:(1) (2)(3)欢迎下载!第四章第五章5-1 将下表所列的某六进制信源进行二进制编码,试问:消息概率u1u2u3u4u5u61/21/41/161/161/161/16000001010011100101 0 01 011

23、 0111 01111011111 0 10 110 1110 11110111110 0 101101110010011111 100000101011011001001100101110111(1) 这些码中哪些是唯一可译码?(2) 哪些码是非延长码?(3) 对全部唯一可译码求出其平均码长和编译效率。解:首先,依据克劳夫特不等式,找出非唯一可译码不是唯一可译码,而:又依据码树构造码字的方法,的码字均处于终端节点他们是即时码5-2 (1) 由于A,B,C,D四个字母,每个字母用两个码,每个码为0.5ms, 所以每个字母用10ms 当信源等概率分布时,信源熵为H(X)=log(4)=2 平均信

24、息传递速率为bit/ms=200bit/s (2) 信源熵为 H(X)= =0.198bit/ms=198bit/s5-35-5(1) H(U)=(2) 每个信源使用3个二进制符号,消灭0的次数为 消灭1的次数为P(0)= P(1)= (3) (4) 相应的香农编码信源符号xi符号概率pi累加概率Pi-Logp(xi)码长Ki码字x11/20110x21/40.52210x31/80.7533110x41/160.875441110x51/320.9385511110x61/640.96966111110x71/1280.984771111110x81/1280.9927711111110 相应的费诺码 信源符号xi符号概率pi第一次分组其次次分组第三次分组第四次分组第五次分组第六次分组第七次分组二元码x11/200x21/41010x31/810110x41/16101110x51/321011110x61/6410111110x71/128101111110x81/128111111110(5)香农码和费诺码相同 平均码长为 编码效率为: 5.65.75.10(2) 5-11 (1)信源熵 (2)香农编码: 信源符号xi符号概率pi累加概率Pi-L

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论