下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上三次函数再探讨-对称中心问题武汉市长虹中学 郭永清三次函数存在对称中心吗?我们先从几个特殊的函数入手,三次函数()是奇函数,其图象关于对称,三次函数()的图象关于点对称,那么对于一般的三次函数有没有对称中心呢?答案是肯定的,有对称中心,其对称中心是。在证明之前,先回忆一个结论:定理1:函数的图像关于点对称,则在证明:设是图像上任意一点,则A关于点的对称点也在函数图像上,即, 又,所以定理2:三次函数的对称中心是证明1:设是图像上任意一点,只要能证明点也在函数图像上。所以所以三次函数的对称中心是证明2:因为的对称中心是(0,0),所以的对称中心为,即而的图象关于对称。证
2、明3:设函数的对称中心为(m,n)。按向量将函数的图象平移,则所得函数是奇函数,所以-2n=0化简得:上式对恒成立,故得,。所以,函数的对称中心是()。定理3:若三次函数有极值,则它的对称中心是两个极值点的中点证明:不妨设为的导方程,判别式,设两极值点为 所以此时的对称中心是两个极值点的中点,同时也是函数的拐点。定理4:是可导函数,若的图像关于点对称,则的图像关于直线对称证明:的图像关于对称,则由图像关于直线对称。三次函数的对称中心是()。所以其导函数的图像关于直线对称。定理5:过三次函数的对称中心且与该三次曲线相切的直线有且只有一条证明:设三次函数,一直线与三次曲线切于点Q(),且直线过点()。直线方程可写为:又 化简为:这说明切点就是对称中心。经典例题欣赏:1. 求的对称中心。2. 求的极值和对称中心。3. (2004年重庆高考题)设函数, (1) 求导函数,并证明有两个不同的极值点(2) 若不等式成立,求a的取值范围。4. 已知(1) 求证(2) 若是R上的增函数,是否存在点P使的图像关于点P 中心对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业理疗服务协议样本版B版
- 2024年商务协议延续申请书样本版B版
- 上海市青浦区2024-2025学年七年级上学期期中英语试题
- 江南大学《概率论与数理统计》2019-2020学年第一学期期末试卷
- 2024年城市公共自行车系统建设项目合同
- 佳木斯大学《儿童少年卫生学》2021-2022学年第一学期期末试卷
- 暨南大学《经济学》2021-2022学年第一学期期末试卷
- 济宁学院《平面构成》2021-2022学年第一学期期末试卷
- 防火门工程质量保证保险合同(2024版)3篇
- 二零二四年度厦门植物园植物科研试验合同
- 人教部编版六年级道德与法治上册第6课《人大代表为人民》精美课件
- 期末 (试题) -2024-2025学年外研版(三起)(2024)英语三年级上册
- 2023年12月英语四级真题及答案-第1套
- 药事管理学实践报告总结
- 2020年花城版八年级下册音乐2.《赶牲灵》(18张)ppt课件
- (完整版)体育理论部分练习题
- 电力行业企业安全生产岗位责任清单
- HXD3C型机车停放制动装置原理与操作
- 《化学毒物伤害院内洗消流程处置专家共识》(2021)要点汇编
- 土建劳务合同范本
- 优质护理与责任护士PPT
评论
0/150
提交评论