版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4-1 运动与运动学运动与运动学4-2 点运动的矢量法点运动的矢量法4-3 点运动的直角坐标法点运动的直角坐标法4-4 点运动的自然法点运动的自然法第四章 点的运动学结论与讨论结论与讨论习题习题:研究物体在空间位置随时间变研究物体在空间位置随时间变化的几何性质化的几何性质。(1)运动方程)运动方程(2) 表征运动几何性质的基本物表征运动几何性质的基本物 理量理量 v、 a、 、(3)运动的合成与分解)运动的合成与分解运动学引言第四章第四章 点的运动学点的运动学(1 1)动力学的基础)动力学的基础(2)机构的运动学设计)机构的运动学设计(3)结构设计与运动分析紧密相关)结构设计与运动分析紧密相关
2、运动学引言第四章第四章 点的运动学点的运动学(1)研究模型研究模型: 点、刚体和刚体系统,统称为物体。点、刚体和刚体系统,统称为物体。运动学引言第四章第四章 点的运动学点的运动学(2)点的运动形式:)点的运动形式: 直线运动和曲线运动直线运动和曲线运动(3)刚体运动形式:)刚体运动形式:平动:其上任一直线永远平行于自身的初始位置。平动:其上任一直线永远平行于自身的初始位置。定轴转动:定轴转动: 其上有一直线始终保持不动其上有一直线始终保持不动。运动学引言第四章第四章 点的运动学点的运动学平面运动:平面运动: 其上各点到某一平面距离相同。其上各点到某一平面距离相同。定点转动:定点转动: 其上有一
3、点永远保持不动。其上有一点永远保持不动。一般运动:刚体最一般的运动。一般运动:刚体最一般的运动。运动学引言运动学引言第四章第四章 点的运动学点的运动学运动学引言第四四章 点的运动学第四章第四章 点的运动学点的运动学运动学引言运动学引言四、运动的概念四、运动的概念机械运动机械运动:物体在空间的位置随时间的变化;物体在空间的位置随时间的变化;参考体:研究物体的机械运动,必须选取另一个物参考体:研究物体的机械运动,必须选取另一个物 体作为参考;体作为参考;在运动学中参照系的选取可以多种多样、以数学描述的在运动学中参照系的选取可以多种多样、以数学描述的方便性为准,一般选取与地面固连的坐标系为参考系。方
4、便性为准,一般选取与地面固连的坐标系为参考系。第四章第四章 点的运动学点的运动学点运动的矢量法点运动的矢量法一、矢径及运动方程一、矢径及运动方程以选取的参考系原点随时指以选取的参考系原点随时指向动点的位置矢量称为动点向动点的位置矢量称为动点的矢径;的矢径;二、速度和加速度的定义二、速度和加速度的定义)( trr rrvt ddrrva 22ddddtt第四章第四章 点的运动学点的运动学点运动的直角坐标法点运动的直角坐标法一、直角坐标下点的运动方程一、直角坐标下点的运动方程)( trr )( 1tfx )( 2tfy )( 3tfz kjizyx二、直角坐标下点的速度与加速度二、直角坐标下点的速
5、度与加速度t ddrv kjitztytxddddddkjizyxvvvkjira22222222ddddddddtztytxtkjizyxaaa第四章第四章 点的运动学点的运动学点运动的直角坐标法点运动的直角坐标法解:解:建立图示直角坐标系,建立图示直角坐标系,由几何关系可得由几何关系可得M点点的运动方程为:的运动方程为:cos)(CMOCxsinAMy talcos)( talsin)( 例一例一 椭圆规的曲柄椭圆规的曲柄OC可绕定轴可绕定轴O转动,其端点转动,其端点C与规尺与规尺AB的中的中点以铰链相连接,点以铰链相连接,A、B端分别在相互垂直的滑槽中运动。端分别在相互垂直的滑槽中运动。
6、已知:已知:OC = CB = CA = l,MC = a, = t。试求规尺上点。试求规尺上点M的运动方程、运动轨迹、速度和加速度。的运动方程、运动轨迹、速度和加速度。第四章第四章 点的运动学点的运动学点运动的直角坐标法点运动的直角坐标法1)()(2222alyalx消去参数消去参数 t 可得轨迹方程为:可得轨迹方程为:经求导后可得经求导后可得M点的速度和加速度方程:点的速度和加速度方程:talxvxsin)( talyvycos)( talxaxcos)(2 talyaysin)(2 talxcos)( talysin)( 第四章第四章 点的运动学点的运动学点运动的直角坐标法点运动的直角坐
7、标法例二例二 正弦机构图示。长为正弦机构图示。长为r的曲柄的曲柄OM绕轴绕轴O匀速转动,它与水平匀速转动,它与水平线间的夹角线间的夹角 = t+ ,其中,其中 为为t=0时的时的 角数值。角数值。 A和和B是动杆上相距是动杆上相距为为b的两点的两点。求。求A和和B点点的运动方程及的运动方程及B点的速度和加速度。点的速度和加速度。解:解:A、B两点均做直线运动,建立两点均做直线运动,建立如图所示坐标系:如图所示坐标系:)sin(sintrrxBbtrbrxA)sin(sin)cos(trxxAB)sin(2trxxAB 第四章第四章 点的运动学点的运动学点运动的自然法点运动的自然法一、弧坐标及点
8、的运动方程一、弧坐标及点的运动方程)( tss 对于确定轨迹的点的运动,可以选取弧坐标对于确定轨迹的点的运动,可以选取弧坐标来描述运动;来描述运动;第四章第四章 点的运动学点的运动学点运动的自然法点运动的自然法二、自然轴系的确定二、自然轴系的确定nb第四章第四章 点的运动学点的运动学点运动的自然法三、点的速度三、点的速度vvtsvddttr0limtst0limtsdd速度大小等于动点弧坐标对时间速度大小等于动点弧坐标对时间的一阶导数的一阶导数, ,方向沿该点切线方向方向沿该点切线方向曲率:曲线切线的转角对弧长一阶导数的绝对值曲率:曲线切线的转角对弧长一阶导数的绝对值曲率半径曲率半径 :曲率的
9、倒数:曲率的倒数dsd12sin200时s且ndsd1为正时,点沿切向的正方向运动,方向与主法线的正向一致s第四章第四章 点的运动学点的运动学点运动的自然法第四章第四章 点的运动学点的运动学点运动的自然法四、点的加速度四、点的加速度t ddva vtsvddt ddtss ddddnvttstsdddddd22 ttstsdddddd22an222ddvtsnnaa例三例三 如图所示半径为如图所示半径为 r 的轮子沿直线轨道无滑动地滚动,设轮的轮子沿直线轨道无滑动地滚动,设轮的转角的转角 = t。求轮缘上任一点。求轮缘上任一点M的运动方程、速度和加的运动方程、速度和加速度。速度。第四章第四章
10、点的运动学点的运动学点运动的自然法解:解:建立图示直角坐标系,建立图示直角坐标系,由几何关系可得由几何关系可得M点点的运动方程为:的运动方程为:sin1MOOCxcos11MOCOy)sin(ttr)cos1 (tr)cos1 (trxtrysin第四章第四章 点的运动学点的运动学点运动的自然法trxsin2 trycos2 )cos1 (trxtrysin注意到当注意到当M点与地面相接触时点与地面相接触时( = 2k ),M点的速度和点的速度和加速度为:加速度为:0 xv0yv0 xa2ray第四章第四章 点的运动学点的运动学点运动的自然法第四章第四章 点的运动学点的运动学点运动的自然法第四
11、章第四章 点的运动学点的运动学点运动的自然法xv例四例四 摇杆滑道机构中的滑块摇杆滑道机构中的滑块M同时在固定的圆弧槽同时在固定的圆弧槽BC和摇杆和摇杆OA的的滑道中滑动。如滑道中滑动。如BC半径为半径为R,摇杆,摇杆OA的轴的轴O在在BC弧的圆周上弧的圆周上. .摇杆摇杆绕绕O轴以等角速度轴以等角速度 转动,当运动开始时转动,当运动开始时, ,摇杆在水平位置。试分别摇杆在水平位置。试分别用直角坐标法和自然法给出点用直角坐标法和自然法给出点M的运动方程,并求速度和加速度。的运动方程,并求速度和加速度。tRRx2costRy2sintRxvx2sin2 tRyvy2cos2 tRvaxx2cos
12、42 tRvayy2sin42 yxxayaayvv解:建立直角坐标系解:建立直角坐标系第四章第四章 点的运动学点的运动学点运动的自然法tRs2Rsv2 0dtdva224RRvanvas建立弧坐标方向如图建立弧坐标方向如图: :第四章第四章 点的运动学点的运动学点运动的自然法其速度与加速度为其速度与加速度为 选选O1点为弧坐标原点,点为弧坐标原点,取其正向与取其正向与 的正向一致。的正向一致。tllscos0tlsvsin0 tlsacos20 tlvan22202sin解:解:A点做圆周运动,故用自然法点做圆周运动,故用自然法A点的运动方程为点的运动方程为单摆的运动规律为单摆的运动规律为
13、, , ,求求(1)(1)摆锤摆锤A的速度与的速度与加速度式;(加速度式;(2 2) 时的时的 和和 。tcos0lAO,43,2,4, 0tAvAa例五例五第第四四章章 点的运动学点的运动学点运动的自然法为运动的起始点为运动的起始点 , ,故故 。因下瞬时有速度。因下瞬时有速度, ,所以所以 ;0t0v0na00 aa为运动的为运动的“反向点反向点”.运动性质同运动性质同 瞬瞬时时t0t4t为加速运动瞬时。为加速运动瞬时。但但 ,因速度方向,因速度方向还在变化;还在变化;2t0a0na为速度大小变化的极值点。为速度大小变化的极值点。43t为减速运动瞬时。为减速运动瞬时。第四章第四章 点的运动
14、学点的运动学点运动的自然法tlvsin020cosalt 2220sinnalt 例六例六 半圆形凸轮以等速半圆形凸轮以等速v0=10mm/s沿水平方向向左运动而使活塞沿水平方向向左运动而使活塞杆杆AB沿铅直方向运动沿铅直方向运动.当运动开始时,活塞杆当运动开始时,活塞杆A端在凸轮的最高点端在凸轮的最高点上。如凸轮的半径上。如凸轮的半径R=80mm,AB=c,求活塞,求活塞B相对于地面和相对相对于地面和相对于凸轮的运动方程和速度。于凸轮的运动方程和速度。xyttvxxAB100解:建立坐标如图解:建立坐标如图活塞相对凸轮的运动方程及速度活塞相对凸轮的运动方程及速度ctcyyAB26410smm
15、ttvyB/64102活塞相对地面的运动方程活塞相对地面的运动方程0ABxxctcyyAB26410smmvxB/100BxvyBByvv第四章第四章 点的运动学点的运动学点运动的自然法点运动的自然法D点的轨迹为圆弧点的轨迹为圆弧运动方程及速度运动方程及速度aktRsaksvD xD点在点在ox/轴上的运轴上的运动方程及速度动方程及速度ktaxDcosktakxvDDsinDvDv例七例七 OA和和O1B两杆分别绕两杆分别绕O和和O1轴转动轴转动, ,用十字形滑块用十字形滑块D将两杆将两杆连接。在运动过程中连接。在运动过程中, ,两杆保持相交成直角。已知两杆保持相交成直角。已知OO1=a, ,
16、 , k为常数,求滑块为常数,求滑块D的速度和相对于的速度和相对于OA的速度。的速度。kt第四章第四章 点的运动学点的运动学点运动的自然法点运动的自然法小小 结结 点的运动方程:动点在空间的几何位置点的运动方程:动点在空间的几何位置随时间变化的规律。随时间变化的规律。矢量形式矢量形式:直角坐标形式直角坐标形式:弧坐标形式弧坐标形式: trr tfztfytfx321)(tfs 轨迹:动点在空间运动时所经过的一条曲线。轨迹:动点在空间运动时所经过的一条曲线。第四章第四章 点的运动学点的运动学点运动的自然法点运动的自然法点的速度、加速度点的速度、加速度:(矢量矢量)矢量形式矢量形式:直角坐标形式直角坐标形式:22dtrddtdvadtdrv dtdzvdtdyvdtdxvzyx,xyzvv ivjv kk
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规押题练习试题B卷含答案
- 2024年无线呼叫器项目资金需求报告代可行性研究报告
- 2024年煤制合成氨项目资金需求报告代可行性研究报告
- 三年级数学计算题专项练习及答案集锦
- 视觉、情感与认同:视听综艺节目的文化认同建构路径
- 牛津译林版英语高一上学期期末试题及答案指导
- 2024年桥梁建设协议格式实例
- 二手房经纪服务个性化协议样本
- 2024年非全日制员工协议示范文本
- 2024年试用期间协议期限规定详解
- 75t汽车吊起重性能表
- 光伏系统的安装工程监理实施细则
- 标准作业组合票--自动生成
- 王洼二矿原煤仓机电设备安装工程资料文稿
- 国家开放大学《理工英语1》边学边练参考答案
- (完整版)绕口令基本功练习
- PSR-E423中英文音色对照表
- 船舶舱室内装饰施工及检验标准
- 餐饮MBO目标管理课件
- 《2021国标结构专业图集资料》15G323-2 钢筋混凝土吊车梁(A4、A5级)(有水印)
- 设备管理系统概要设计说明书.doc
评论
0/150
提交评论