高中物理必修二知识点总结(人教版)-高中物理知识点总结必修二_第1页
高中物理必修二知识点总结(人教版)-高中物理知识点总结必修二_第2页
高中物理必修二知识点总结(人教版)-高中物理知识点总结必修二_第3页
高中物理必修二知识点总结(人教版)-高中物理知识点总结必修二_第4页
高中物理必修二知识点总结(人教版)-高中物理知识点总结必修二_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学习必备 精品知识点第五章 平抛运动5- 1 曲线运动 & 运动的合成与分解曲线运动1. 定义: 物体运动轨迹是曲线的运动。2. 条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。3. 特点: 方向:某点瞬时速度方向就是通过这一点的曲线的切线方向 运动类型:变速运动(速度方向不断变化) 。 F 合 0,一定有加速度 a。 F 合方向一定指向曲线凹侧。 F 合可以分解成水平和竖直的两个力。4. 运动描述蜡块运动涉及的公式:vvx2 vy2tanvy运动的合成与分解1. 合运动与分运动的关系: 等时性、独立性、等效性、矢量性。2. 互成角度的两个分运动的合运动的判断: 两个匀速直线

2、运动的合运动仍然是匀速直线运动。 速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其 合运动是匀变速 曲线运动, a 合为分运动的加速度。 两初速度为 0 的匀加速直线运动的合运动仍然是匀加速直线运动。 两个初速度不为 0 的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分 运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线 运动,否则即为曲线运动。三、有关“曲线运动”的两大题型模型三: 间接位移 x 最短:v船v v 水d(一)小船过河问题 模型 一:过河时间 t 最短:tmind v船xd sin模型二: 直接位移

3、 x 最短:v水xd xmximni=n d,costttanv船d,d,v 船 sin,v 船 sinv水L,v船v水cossminv水(v水 - v船vc船os )cosv船v水Lv船 sin 触类旁通 1 (2011 年上海卷 ) 如图 5 4 所示,人沿平直的河岸以速度 v 行走,且通过不可学习必备 精品知识点伸长的绳拖船, 船沿绳的方向行进 此过程中绳始终与水面平行, 当绳与河岸的夹角为时,船的速率为( C )。A.v sinB. vC.v cosD.sincos解析: 依题意,船沿着绳子的方向前进,即船的速度总是沿着绳子的,根据绳子两端连接的物体在绳子方向上的投影速度相同,可知人的

4、速度 v 在绳子方向上的分量等于船速,故 v 船v cos , C 正确2(2011 年江苏卷 )如图 55 所示,甲、乙两同学从河中 O 点出发,分别沿直线游到 A 点和 B 点后,立即沿原路线返回到 O 点,OA、OB 分别与水流方向平行和 垂直,且 OAOB.若水流速度不变, 两人在静水中游速相等, 则他们 所用时间 t 甲、B DA t 甲<t 乙 C t 甲>t 乙t 乙的大小关系为 (C) t 甲 t 乙 无法确定解析: 设游速为v,水速为 v0,OAOBl,则 t 甲vv0乙沿 OB运动,乙的速度矢量图如图 4 所示,合速度必须沿 则 t 乙 2· 2l 2

5、,联立解得 t 甲>t 乙,C 正确v v0(二)绳杆问题 ( 连带运动问题 )1、实质:合运动的识别与合运动的分解。2、关键:物体的实际运动是合速度,分速度的方向要按实际运动效果确定;沿绳(或杆)方向的分速度大小相等。模型四: 如图甲,绳子一头连着物体 B,一头拉小船 A,这时船的运动方向不沿绳子乙处理方法: 如图乙,把小船的速度 vA沿绳方向和垂直于绳的方向分解为 v1和 v2,v1就是拉绳的速度, vA就是小船的实际速度。 触类旁通 如图,在水平地面上做匀速直线运动的汽车,通过定滑 轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别 为 v1 和 v2 ,则下列说法正确的是

6、 ( C )A物体做匀速运动,且 v 2v1 B 物体做加速运动,且 v 2>v1 C物体做加速运动,且 v 2<v1 D 物体做减速运动,且 v 2<v1 解析:汽车向左运动, 这是汽车的实际运动, 故为汽车的合运动 汽 车的运动导致两个效果:一是滑轮到汽车之间的绳变长了;二是滑 轮到汽车之间的绳与竖直方向的夹角变大了显然汽车的运动是由 沿绳方向的直线运动和垂直于绳改变绳与竖直方向的夹角的运动合 成的,故应分解车的速度,如图,沿绳方向上有速度 v2 v1sin . 由于 v1 是恒量,而逐渐增大,所以 v 2 逐渐增大,故被吊物体做 加速运动,且 v 2<v1, C

7、正确5- 2 平抛运动 & 类平抛运动一、抛体运动1. 定义:以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力的作用,它 的运动即为抛体运动。2. 条件: 物体具有初速度;运动过程中只受 G。、平抛运动1. 定义:如果物体运动的初速度是沿水平方向的,这个运动就叫做平抛运动。2. 条件: 物体具有水平方向的加速度;运动过程中只受 G。是竖直方向的自由落体运动4. 规律:3. 处理方法: 平抛运动可以看作两个分运动的合运动:一个是水平方向的匀速直线运动,一个位移: x v0t,y 12gt2,s (v0t)2 (12gt2)2,tan 2gvt0 .正切值的两倍。证明如下:

8、2)速度: vx v0 , vy gt, vv02 (gt)2 , tan gtv03)推论:从抛出点开始,任意时刻速度偏向角的正切值等于位移偏向角的tan gtv0tan1 gt22v0tgt2v0.tan =tan =2tan。从抛出点开始,任意时刻速度的反向延长线对应的水平位移的交点为此水平位移 的中点,即 tan2 y .如果物体落在斜面上,则位移偏向角与斜面倾斜角相等。x 牛刀小试 如图为一物体做平抛运动的 x y 图象,物体从 O 点抛出, y 分别表示其水平位移和竖直位移在物体运动过程中的某一点P(a ,b) ,其速度的反向延长线交于 x 轴的 A 点(A 点未画出) ,则 OA

9、 的长度为(B) A.a B.0.5a C.0.3a D. 无法确定 解析:作出图示(如图59所示) ,设v与竖直方向的夹角为 ,根据几何x、关系得 tan ,由平抛运动得水平方向有 av0t ,竖直方向有1ab2vyt ,由式得 tan 2b ,在 Rt AEP中,AE b tan a2,a所以 OA2.5. 应用结论影响做平抛运动的物体的飞行时间、射程及落地速度的因素a、飞行时间: t 2h ,t 与物体下落高度 h 有关,与初速度 v0 无关b、水平射程:x v0t v02h2h,由 v0和 h 共同决定学习必备 精品知识点c、落地速度: vv02 vy2v02 2gh ,v 由 v0和

10、 vy 共同决定。三、平抛运动及类平抛运动常见问题模型一: 斜面问题:处理方法: 1. 沿水平方向的匀速运动和竖直方向的自由落体运动; 面方向的匀加速运动和垂直斜面方向的竖直上抛运动。2. 沿斜2v0 tan考点一:物体从 A运动到 B 的时间: 根据 x v0t,y 1gt2 t 2g考点二: B 点的速度 vB及其与 v 0的夹角:v v02 (gt)2 v0 1 4tan2 , arctan(2 tan )2考点三: A、 B 之间的距离 s: sx2v0 tancos gcos 触类旁通 (2010 年全国卷 ) 一水平抛出的小球落到一倾角为的斜面 上时,其速度方向与斜面垂直, 运动轨

11、迹如图 5 10 中虚线所示 竖直方向下落的距离与在水平方向通过的距离之比为 (D) 11C. D.tan 2tanA.tanB.2 tan解析:如图 5 所示,平抛的末速度与竖直方向的夹角等于斜面倾角v y 21gt 2 gt 1 tan gvt ,则下落高度与水平射程之比为 yx2v0t 2gvt02tan1 模型二: 临界问题:思路分析: 排球的运动可看作平抛运动,把它分解为水平的匀速直线运动和 竖直的自由落体运动来分析。但应注意本题是“环境”限制下的平抛运动, 应弄清限制条件再求解。关键是要画出临界条件下的图来。小球在例:如图 1 所示,排球场总长为 18m,设球网高度为 2m,运动员

12、站在离网 3m 的线上(图中虚线所示)正对网前跳起将球水平击出。 (不计空气阻力) ( 1)设击球点在 3m 线正上方高度为 2.5m 处,试问击球的速度在什么范围 内才能使球即不触网也不越界?( 2)若击球点在 3m线正上方的高度小余某个值, 那么无论击球的速度多大, 球不是触网就是越界,试求这个高度?学习必备 精品知识点模型三: 类平抛运动:考点一:沿初速度方向的水平位移:2b12根据 s v0t,b at2,mgsin ma s v00 2 gsingsin考点二:入射的初速度: a' mgsin gsin ,b 1a't2,a v0t v0m 2 2b考点三: P到 Q

13、的运动时间: a mgsin gsin ,b 1a't2, t 2b . m 2 gsin年海南卷 ) 如图 所示,水平地面上有一个坑,其 ab 为沿水平方向的直径若在 a 点以初速度 v 0 c 点已知 c 点与 综合应用 (2011 竖直截面为半圆, 沿 ab 方向抛出一小球,小球会击中坑壁上的 水平地面的距离为坑半径的一半,求坑的半径。解:设坑的半径为 r ,由于小球做平抛运动,则xv0ty0.5r112gt过 c 点作 cdab 于 d 点,则有 RtacdRt cbd 可得 cd2ad· dbr2即为(2) 2x(2r x)4 7 4 3 2又因为 x>r ,

14、联立式解得 r4 74 3 v02.g0§ 5-3 圆周运动 & 向心力 & 生活中常见圆周运动一、匀速圆周运动1.定义: 物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即 为匀速圆周运动。2. 特点: 轨迹是圆;线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变 速曲线运动,匀速圆周运动的角速度恒定;匀速圆周运动发生条件是质点受到大小不变、方 向始终与速度方向垂直的合外力;匀速圆周运动的运动状态周而复始地出现,匀速圆周运动 具有周期性。3. 描述圆周运动的物理量:(1)线速度 v 是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿

15、轨迹切线,国际单位制 中单位符号是 m/s,匀速圆周运动中, v 的大小不变,方向却一直在变;(2)角速度 是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad s;(3)周期 T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率 f 是质点在单位时间内完成一个完整圆周运动的次数, 在国际单位制中单位符号是 Hz;学习必备 精品知识点(5) 转速 n 是质点在单位时间内转过的圈数,单位符号为 r/s ,以及 r/min 4. 各运动参量之间的转换关系:v R 2T R 2 nR 变形v2RT2 n,T 2 R.vTB5. 三种常见的转动装置及其特点: 模型一: 共

16、轴传动vA vB, BAr ,TB R,TA模型三: 齿轮传动r1n2 触类旁通 1 、一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量相同的小球 A 和 B 沿着筒的内壁在水平面内做匀速圆周运动, 如图所示, A的运动半径较大,则 ( AC )AA 球的角速度必小于 B球的角速度BA 球的线速度必小于 B球的线速度CA 球的运动周期必大于 B球的运动周期DA 球对筒壁的压力必大于 B球对筒壁的压力解析: 小球 A、B 的运动状态即运动条件均相同,属于三种模型中的皮带传送。则可以知道,两个小球的线速度 v 相同, B错;因为 RA>RB,则A<B,TA<TB,A.

17、C 正确;又因为两小球各方面条件均相同,所以,两小球对筒壁的压力相同,D错2、两个大轮半径相等的皮带轮的结构如图所示, AB 两点的半径之比 为 2 : 1 ,CD两点的半径之比也为 2 : 1 ,则 ABCD四点的角速度之比 为 1122 ,这四点的线速度之比为 214 2 。所以 A、C正确二、向心加速度1. 定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。 注:并不是任何情况下,向心加速度的方向都是指向圆心。当物体做变速圆周运动时,向心加 速度的一个分加速度指向圆心。2.方向: 在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。向心加速度只改变线 速度的方

18、向而非大小。3. 意义: 描述圆周运动速度方向方向改变快慢的物理量。4. 公式: an v 2r v2T r (2 n)2r.anan5. 两个函数图像:学习必备 精品知识点 触类旁通 1 、如图所示的吊臂上有一个可以沿水平方向运动的小车A,小车下装有吊着物体 B 的吊钩。在小车 A 与物体 B 以相同的水平速度沿 吊臂方向匀速运动的同时,吊钩将物体 B向上吊起。 A、B 之间的距离以 d = H 2t 2(SI)(SI 表示国际单位制,式中 H 为吊臂离地面的高度 ) 规律 变化。对于地面的人来说,则物体做 ( AC )速度大小不变的曲线运动速度大小增加的曲线运动 加速度大小方向均不变的曲线

19、运动加速度大小方向均变化的曲线运动沿竖直方向, 上端 A 距 速度为,最后落在地面2、如图所示,位于竖直平面上的圆弧轨道光滑,半径为R, OB地面高度为 H,质量为 m的小球从 A点由静止释放, 到达 B点时的 上 C 点处,不计空气阻力,求:(1) 小球刚运动到 B 点时的加速度为多大,对轨道的压力多大;(2) 小球落地点 C与 B 点水平距离为多少。三、向心力1. 定义: 做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力2. 方向: 总是指向圆心。3. 公式:Fn mv m 2r mv m r2 2 2 r m(2 n)2r.T4. 几个注意点: 向心力的方向总是指向圆心,它的方

20、向时刻在变化,虽然它的大小不变,但 是向心力也是变力。在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是, 不要加上向心力。描述做匀速圆周运动的物体时,不能说该物体受向心力,而是说该物体受 到什么力,这几个力的合力充当或提供向心力。四、变速圆周运动的处理方法1. 特点: 线速度、向心力、向心加速度的大小和方向均变化。22. 动力学方程: 合外力沿法线方向的分力提供向心力: Fn mv m 2r 。合外力沿切线方向的分 r力产生切线加速度: FT=maT。3. 离心运动:(1) 当物体实际受到的沿半径方向的合力满足 F 供=F需=m2r 时,物体做圆周运动;当 F 供F需=m 、圆周运

21、动中的动力学问题谈一谈: 圆周运动问题属于一般的动力学问题,无非是由物体的受力情况确定物体的运动情况, 或者由物体的运动情况求解物体的受力情况。解题思路就是,以加速度为纽带,运用那个牛顿 第二定律和运动学公式列方程,求解并讨论。模型一: 火车转弯问题:ha、涉及公式: F合 mgtan mgsin mgh F合 mv0 ,由得: v0 Rgh 。r 时,物体做离心运动。(2)离心运动并不是受“离心力”的作用产生的运动,而是惯性的表现,是F 供<F需的结果;离心运动也不是 沿半径方向向外远离圆心的运动。五、圆周运动的典型类型类型受力特点图示最高点的运动情况用细绳拴 一小球在 竖直平面 内转

22、动绳对球只有 拉力2mv若 F 0,则 mg R ,v gR若 F 0,则 v> gR小球固定 在轻杆的 一端在竖 直平面内 转动杆对球可以 是拉力也可 以是支持力2若 F 0,则 mgmRv,v gR2若 F 向下,则 mgFmvR,v> gR2mv若 F向上,则 mgF R 或 mgF0,则 0 v< gR小球在竖 直细管内 转动管对球的弹 力 FN 可以向 上也可以向 下2依据 mgmRv判断,若 vv0,FN0;若 v<v0,FN向上;若 v>v0, FN向下球壳外的 小球在最高点时 弹力 FN的方 向向上如果刚好能通过球壳的最高点 A,则 vA 0,FN

23、mg如果到达某点后离开球壳面, 该点处小球 受到壳面的弹力 FN 0,之后改做斜抛运动, 若在最高点离开则为平抛运动六、有关生活中常见圆周运动的涉及的几大题型分析(一)解题步骤: 明确研究对象; 定圆心找半径; 对研究对象进行受力分析; 对外力进行正交分解; 列方程:将与和物体在同一圆周运动平面上的力或其分力代数运算后,另得数等于向 心力; 解方程并对结果进行必要的讨论。(二)典型模型:22模型二: 汽车过拱桥问题: a、涉及公式: mg FN mv , 所以当 FN mg mv mg RR此时汽车处于失重状态,而且 v 越大越明显,因此汽车过拱桥时不 宜告诉行驶。2b、分析: 当 FN mg

24、 mv v gR :R(1)v gR ,汽车对桥面的压力为 0,汽车出于完全失重状态;(2)0 v gR ,汽车对桥面的压力为 0 FN mg。c、注意: 同样,当汽车过凹形桥底端时满足FN,汽车对(3)v gR ,汽车将脱离桥面,出现飞车现象。桥面的压力将大于汽车重力,汽车处于超重状态,若车速过大,容易出现爆胎现象,即也不宜高速行驶。 触类旁通 1 、铁路在弯道处的内外轨道高度是不同的, 已知内外轨道平面与水平面的倾角为, 如图所示,弯道处的圆弧半径为 R,若质量为 m的火车转弯时速度 小于,则( A )A内轨对内侧车轮轮缘有挤压B外轨对外侧车轮轮缘有挤压C这时铁轨对火车的支持力等于D这时铁

25、轨对火车的支持力大于解析: 当内外轨对轮缘没有挤压时,物体受重力和支持力的合力提供向心力,此时速度为gRtan。2、如图所示,质量为 m的物体从半径为 R 的半球形碗边向碗底滑动,滑倒 最低点时的速度为 v。若物体滑倒最低点时受到的摩擦力是 f ,则物体与碗 的动摩擦因数为( B )。A、 f B 、 fR C 、 fR D 、 fR2解得 F mg mv ,Rmg mgR mv2mgR mv2mv22解析: 设在最低点时,碗对物体的支持力为vF,则 F mg ma m ,f fRf= F 解得2 ,化简得2 ,所以 B 正确v mgR mvmg mRII 、圆周运动的临界问题A.常见竖直平面

26、内圆周运动的最高点的临界问题谈一谈: 竖直平面内的圆周运动是典型的变速圆周运动。对于物体在竖直平面内做变速圆周运 动的问题,中学物理只研究问题通过最高点和最低点的情况,并且经常出现有关最高点的临界 问题。模型三: 轻绳约束、单轨约束条件下,小球过圆周最高点:2v临界 mg mRv临界gR 。(注意: 绳对小球只能产生沿绳收缩方向的拉力 . ) (1)临界条件:小球到达最高点时,绳子的拉力或单轨 的弹力刚好等于 0,小球的重力提供向心力。即:(2)小球能过最高点的条件: v gR.当v gR时,绳 对球产生向下的拉力或轨道对球产生向下的压力。(3)小球不能过最高点的条件: v gR (实际上球还

27、 没到最高点时就脱离了轨道)模型四: 轻杆约束、双轨约束条件下,小球过圆周最高点:1)临界条件:由于轻杆和双轨的支撑作用,小球恰能到达最杆v甲高点的临街速度 v临界 0.(2)如图甲所示的小球过最高点时,轻杆对小球的弹力情况: 当 v=0 时,轻杆对小球有竖直向上的支持力 FN,其大小等于小 球的重力,即 FN=mg; 当 0 v gR 时,轻杆对小球的支持力的方向竖直向上,大小随小球速度的增大而减小,其取值范围是 0 FN mg ; 当 v gR 时, FN=0; 当 v gR 时,轻杆对小球有指向圆心的拉力,其大小随速度的增大而增大。(3)如图乙所示的小球过最高点时,光滑双轨对小球的弹力情

28、况: 当 v=0 时,轨道的内壁下侧对小球有竖直向上的支持力 FN,其大小等于小球的重力, 即 FN=mg; 当 0 v gR 时,轨道的内壁下侧对小球仍有竖直向上的支持力FN,大小随小球速度的增大而减小,其取值范围是 0 FN mg;当 v gR 时, FN=0;当 v gR 时,轨道的内壁上侧对小球有竖直向下指向圆心的弹力,其大小随速度的增大而 增大。模型五: 小物体在竖直半圆面的外轨道做圆周运动:两种情况:( 1)若使物体能从最高点沿轨道外侧下滑,物体在最高点的速度 v 的限制条件是 v gR.2)若 v gR,物体将从最高电起,脱离圆轨道做平抛运动。 触类旁通 1 、如图所示,质量为

29、0.5 kg 的小杯里盛有 1 kg 的水,用绳子 系住小杯在竖直平面内做“水流星”表演,转动半径为 1 m,小杯通过最高 点的速度为 4 m/s ,g 取 10 m/s2 ,求:(1) 在最高点时,绳的拉力?(2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出 答案: (1)9 N ,方向竖直向下; (2)6 N 2、如图所示,细杆的一端与一小球相连, 给小球一初速度,使其做圆周运动,图中 最高点,则杆对球的作用力可能是 Aa 处为拉力, b 处为拉力 B Ca 处为推力, b 处为拉力 D 3、如图所示, LMPQ是光滑轨道, R=1.6m的半圆,QOM在同一竖直面上,

30、在恒力 F作用下,质量 m=1kg 物体 A从 L 点由静止开始运动,当达到 M时立即停止用力, 好能通过 Q点,则力 F 大小为多少?(取 g=10m/s2) 解析:物体 A经过 Q时,其受力情况如图所示:2 由牛顿第二定律得: mg FN mvR, 在最高点时最小速率是多少 ? ,方向竖直向上; (3)m/s = 3.16 m/s 可绕过 O点的水平轴自由转动,现 b 分别表示小球轨道的最低点和a、( AB )a 处为拉力, b 处为推力a 处为推力, b 处为推力 LM水平,长为 5m,MPQ是一半欲使ALaQOFN mg径的P A刚物体 A刚好过 A时有 FN=0;解得 v gR 4m

31、/s, 对物体从 L 到 Q全过程,由动能定理得:12F LM 2mgRmv2 ,解得 F=8N。2B.物体在水平面内做圆周运动的临界问题MPOM谈一谈: 在水平面内做圆周运动的物体,当角速度 变化时,物体有远离或向着圆心运动(半 径变化)的趋势。这时要根据物体的受力情况判断物体所受的某个力是否存在以及这个力存在 时方向如何(特别模型六: 转盘问题是一些接触力,如静摩擦力、绳的拉力等)处理方法: 先对 A 进行受力分析,如图所示,注意在分析时不能忽略摩擦力,当 然,如果说明盘面为光滑平面,摩擦力就可以忽略了。受力分析完成后,可以发 现 支 持 力 N 与 mg 相 互 抵 销 , 则 只 有

32、f 充 当 该 物 体 的 向 心 力 , 则 有 v22F m m 2R m( )2R m(2 n)2R f mg ,接着可以求的所需的圆周 RT运动参数等。等效处理: O可以看作一只手或一个固定转动点,B 绕着 O经长为杆的牵引做着圆周运动。还是先对 B 进行受力分析,发现,上图的 等效为绳或杆对小球的拉力,则将 f 改为 F 拉即可,根据题意求出 v22F mv m 2R m(2 )2R m(2 n)2R F拉 ,即可求的所需参量。R的轻绳或轻 f 在此图中可 F 拉, 带入公式【综合应用】1、如图所示,按顺时针方向在竖直平面内做匀速转动的轮子其边缘上有 一点 A ,当 A 通过与圆心等

33、高的 a 处时,有一质点 B 从圆心 O 处开 始做自由落体运动已知轮子的半径为 R,求:(1) 轮子的角速度满足什么条件时,点 A 才能与质点 B 相遇?(2) 轮子的角速度满足什么条件时,点 A 与质点 B 的速度才有可能 在某时刻相同? 解析: (1) 点 A 只能与质点 B 在 d 处相遇,即轮子的最低处,则点 A 从 a 处转到 d 处所转3 过的角度应为 2n2,其中 n 为自然数1 2R由 h2gt 2知,质点 B从 O点落到 d 处所用的时间为 t g ,则轮子的角速度应满足条件 t (2 n2) 2R,其中 n 为自然数(2) 点 A 与质点 B 的速度相同时,点 A 的速度

34、方向必然向下,因此速度相同时,点 A 必然运 动到了 c 处,则点 A 运动到 c 处时所转过的角度应为' 2n,其中 n 为自然数 转过的时间为 t' ' (2n 1)''此时质点 B 的速度为 v Bgt ,又因为轮子做匀速转动,所以点 A 的速度为 v A R由 v AvB 得,轮子的角速度应满足条件 ' (2n 1) g ,其中 n 为自然数R比赛路径如下图所示, 赛2、(2009 年高考浙江理综 ) 某校物理兴趣小组决定举行遥控赛车比赛车从起点 A出发,沿水平直线轨道运动 L 后,由 B 点进入半径为 R 的光滑竖直圆轨道, 离开竖直圆

35、轨道后继续在光滑平直轨道上运动 到 C 点,并能越过壕沟已知赛车质量 m 0.1 kg ,通电后以额定 功率 P 1.5 W工作,进入竖直轨道前受到的阻力恒为 0.3 N,随后 在运动中受到的阻力均可不记图中 L10.00 m,R0.32 m,h 1.25 m,x1.50 m 问:要使赛车完成比赛,电动机至少工作 多长时间? ( 取 g 10 m/s 2)解析: 设赛车越过壕沟需要的最小速度为 v1,由平抛运动的规律v2,最低点的速度为 v3,由牛顿第二1R xv1t ,h2gt 2,解得: v1x 2h3 m/s 设赛车恰好越过圆轨道,对应圆轨道最高点的速度为定律及机械能守恒定律得2v2 m

36、gmR12mv32 12mv22mg(2 R)解得 v3 5gh 4 m/s 通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是 vmin4 m/s设电动机工作时间至少为 t ,根据功能关系 12PtFfL2mvmin,由此可得 t 2.53 s.3、如下图所示,让摆球从图中 A 位置由静止开始下摆,正好到最低点 B位置时线被拉断设摆 线长为 L1.6 m,摆球的质量为 0.5kg ,摆线的最大拉力为 10N,悬点与地面的竖直高度为 H=4m,不计空气阻力, g 取 10 m/s 2。求: (1)摆球着地时的速度大小 ( 2)D到 C的距离。 解析:(1)小球刚摆到 B 点时,由牛顿

37、第二定律可知:2Fm mg mvlB ,由并带入数据可解的: vB 4m/s, 小球离开 B 后,做平抛运动 .12)落地点 D到 C的距离 s vBt8 3m.5竖直方向: H l 1 gt 2 ,落地时竖直方向的速度: vy gt 落地时的速度大小: v vB2 vy2 ,由得: v 8m/s.第六章 万有引力与航天§ 6-1 开普勒定律一、两种对立学说(了解)1. 地心说: (1)代表人物:托勒密; ( 2)主要观点:地球是静止不动的,地球是宇宙的中心。2. 日心说:(1)代表人物:哥白尼; ( 2)主要观点:太阳静止不动,地球和其他行星都绕太阳运动。二、开普勒定律1. 开普勒

38、第一定律(轨道定律) :所有行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的 一个焦点上。2. 开普勒第二定律(面积定律) :对任意一个行星来说,它与太阳的连线在相等时间内扫过相等 的面积。此定律也适用于其他行星或卫星绕某一天体的运动。3. 开普勒第三定律(周期定律) :所有行星轨道的半长轴 R的三次方与公转周期 T的二次方的比 3值都相同,即 a2 k,k 值是由中心天体决定的。通常将行星或卫星绕中心天体运动的轨道近似 为圆,则半长轴 a 即为圆的半径。我们也常用开普勒三定律来分析行星在近日点和远日点运动 速率的大小。 牛刀小试 1 、关于“地心说”和“日心说”的下列说法中正确的是( AB

39、 ) 。A地心说的参考系是地球B日心说的参考系是太阳C地心说与日心说只是参考系不同,两者具有等同的价值D日心说是由开普勒提出来的2、开普勒分别于 1609 年和 1619 年发表了他发现的行星运动规律,后人称之为开普勒行星运动定律。关于开 普勒行星运动定律,下列说法正确的是 ( B )A所有行星绕太阳运动的轨道都是圆,太阳处在圆心上 B对任何一颗行星来说,离太阳越近,运行速率就越大C在牛顿发现万有引力定律后,开普勒才发现了行星的运行规律 D开普勒独立完成了观测行星的运行数据、整理观测数据、发现行星运动规律等全部工作6- 2 万有引力定律一、万有引力定律1. 月地检验: 检验人:牛顿;结果:地面

40、物体所受地球的引力,与月球所受地球的引力 都是同一种力。2. 内容:自然界的任何物体都相互吸引,引力方向在它们的连线上,引力的大小跟它们的质量 m1和 m2乘积成正比,跟它们之间的距离的平方成反比。3. 表达式: F Gm1m2 2 ,G 6.67 10 11N m2 / kg 2(引力常量 ).r24. 使用条件: 适用于相距很远,可以看做质点的两物体间的相互作用,质量分布均匀的球体也 可用此公式计算,其中 r 指球心间的距离。5. 四大性质:普遍性:任何客观存在的有质量的物体之间都存在万有引力。 相互性:两个物体间的万有引力是一对作用力与反作用力,满足牛顿第三定律。 宏观性:一般万有引力很

41、小,只有在质量巨大的星球间或天体与天体附近的物体间,其存在 才有意义。 特殊性:两物体间的万有引力只取决于它们本身的质量及两者间的距离,而与它们所处环境 以及周围是否有其他物体无关。6. 对 G的理解:G是引力常量,由卡文迪许通过扭秤装置测出,单位是N m2/kg2。同时标志着力学实验精G在数值上等于两个质量为 1kg 的质点相距 1m时的相互吸引力大小。 G的测定证实了万有引力的存在, 从而使万有引力能够进行定量计算, 密程度的提高,开创了测量弱相互作用力的新时代。 牛刀小试 1 、关于万有引力和万有引力定律理解正确的有( B )m1m2A不可能看作质点的两物体之间不存在相互作用的引力C由

42、F =G mr1m2 2知,两物体间距离 r 减小时,它们之间的引力增大,紧靠在一起时,万有引力非常大B可看作质点的两物体间的引力可用F =G计算D引力常量的大小首先是由卡文迪许测出来的,且等于6.67 ×1011N·m2 / kg2、下列说法中正确的是 ( ACD )A总结出关于行星运动三条定律的科学家是开普勒B总结出万有引力定律的物理学家是伽俐略C总结出万有引力定律的物理学家是牛顿D第一次精确测量出万有引力常量的物理学家是卡文迪许7. 万有引力与重力的关系:(1) “黄金代换”公式推导: 当 G F 时,就会有 mg GM2m GM gR2 。R2(2) 注意: 重力是

43、由于地球的吸引而使物体受到的力,但重力不是万 有引力。只有在两极时物体所受的万有引力才等于重力。 重力的方向竖直向下,但并不一定指向地心,物体在赤道上重力最 小,在两极时重力最大。随着纬度的增加,物体的重力减小,物体在赤道上重力最小,在两极时重力最大。 物体随地球自转所需的向心力一般很小,物体的重力随纬度的变化很小,因此在一般粗略的 计算中,可以认为物体所受的重力等于物体所受地球的吸引力,即可得到“黄金代换”公式。学习必备 精品知识点 牛刀小试 设地球表面的重力加速度为 力加速度为 g,则 g g0为( D )A16 1B 4 1C 14D116g0,物体在距地心 4 R(R 为地球半径 )处

44、,由于地球的作用而产生的重38. 万有引力定律与天体运动:(1) 运动性质:通常把天体的运动近似看成是匀速圆周运动。2v2anLnL2 2L (2 f)2L. T(2) 从力和运动的关系角度分析天体运动: 天体做匀速圆周运动运动,其速度方向时刻改变,其所需的向 心力由万有引力提供,即 F 需=F万。如图所示,由牛顿第二定律得: F需 ma,F万 GM2m ,从运动的角度分析向心加速度:(3)重要关系式:GMmv22 2 2 2m m L m L m(2f)L.L2L T 牛刀小试 1 、两颗球形行星 A 和 B 各有一颗卫星 a 和 b,卫星的圆形轨道接近各自行星的表面,如果两颗行星的质量之比

45、,半径之比 = q ,则两颗卫星的周期之比等于 q q 。 p2、地球绕太阳公转的角速度为 1,轨道半径为 R1,月球绕地球公转的角速度为 2,轨道半径为 R2,那么太 阳的质量是地球质量的多少倍?解析: 地球与太阳的万有引力提供地球运动的向心力,月球与地球的万有引力提供月球运动的向心力,最后23算得结果为 1R1 。2R23、假设火星和地球都是球体,火星的质量M1与地球质量 M2之比 M1 = p;火星的半径 R1与地球的半径 R2之比M2R1 = q,那么火星表面的引力加速度 g1与地球表面处的重力加速度 g2 之比 g1 等于( A )R2g2A p2Bp q2C pDp qq2 q9.

46、 计算大考点:“填补法”计算均匀球体间的万有引力:谈一谈: 万有引力定律适用于两质点间的引力作用,对于形状不规则的物体应给予填补,变成 一个形状规则、便于确定质点位置的物体,再用万有引力定律进行求解。模型: 如右图所示,在一个半径为 R,质量为 M的均匀球体中, 紧贴球的边缘挖出一个半径为 R/2 的球形空穴后, 对位于球心和 空穴中心连线上、与球心相距 d 的质点 m的引力是多大? 思路分析: 把整个球体对质点的引力看成是挖去的小球体和剩余部分对质 点的引力之和,即可求解。根据“思路分析”所述,引力 F 可视作 F=F1+F2:已知F GM2m ,因半径为R / 2的小球质量为M'

47、4R4R M1M ,d 2 3232R3 48学习必备 精品知识点所以F2 G d R 2 G2Mm8 d R2F1 F F2d2 G8 d8dMm2GMm 7d2 8dR 2R28d2 d R222 则挖去小球后的剩余部分对球外质点 m的引力为 GMm 7d 8dR 2R8d 2 d R2 能力提升 某小报登载:×年×月×日,×国发射了一颗质量为100kg,周期为 1h 的人造环月球卫星。一位同学记不住引力常量G的数值且手边没有可查找的材料,但他记得月球半径约为地球的14,月1球表面重力加速度约为地球的 ,经过推理,他认定该报道是则假新6闻,试写出他的

48、论证方案。 ( 地球半径约为 6.4 ×103km)Mm 42R3证明: 因为 GR2 m T2 R,所以 T2 GM,又mg得 g GR2M,故 Tmin22g月R3GMR月223×6.4 ×1062×9.83s6.2 ×103s1.72h。环月卫星最小周期约为 1.72h ,故该报道是则假新闻。6- 3 由“万有引力定律”引出的四大考点一、解题思路“金三角”关系:1)万有引力与向心力的联系:万有引力提供天体做匀速圆周运动的向心力,即GMm2r2v2ma m m rr22mrT2m(2 n)2r 是本章解题的主线索2)万有引力与重力的联系:物

49、体所受的重力近似等于它受到的万有引力, 即 GM2m mg,g 为 r对应轨道处的重力加速度,这是本章解题的副线索3)重力与向心力的联系:mg2 v2 m m rr22T r,g 为对应轨道处的重力加速度,适 T用于已知 g 的特殊情况、天体质量的估算模型一:环绕型:谈一谈: 对于有卫星的天体,可认为卫星绕中心天体做匀速圆周运动,中心天体对卫星的万有 引力提供卫星做匀速圆周运动的向心力,利用引力常量 G和环形卫星的 v、 、T、r 中任意两 个量进行估算(只能估计中心天体的质量,不能估算环绕卫星的质量) 。已知 r 和 T: G Mm2r24 2r 32 2rM 2T GT 2已知 r 和 v

50、: G Mm2r222 v rv mMrG已知 T和 v: G Mm2r22vmmr22rTv3T2G模型二:表面型:谈一谈: 对于没有卫星的天体(或有卫星,但不知道卫星运行的相关物理量) ,可忽略天体自转 的影响,根据万有引力等于重力进行粗略估算 。MmR2mggR2G变形:如果物体不在天体表面, 但知道物体所在处的 g,也可以利用上面的方 法求出天体的质量: 处理:不考虑天体自转的影响,天体附近物体的重力等于物体受的万有引力,即:GMm(R h)2mg' M2g'(R h)2G 触类旁通 1 、(2013·福建理综, 13) 设太阳质量为 M,某行星绕太阳公转周期

51、为 T,轨道可视作半径为 r 的圆。已知万有引力常量为 G,则描述该行星运动的上述物理量满足 ( A )AGM2342r3T2BGM2242r2T2GM224 2r 2T3DGM4r3T22GMm42r2 mr T2 可得解析: 本题考查了万有引力在天体中的应用。是知识的简单应用。由42r3GM T2 , A 正确 。2、(2013·全国大纲卷, 18) “嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为 200km的圆形轨道上运行,运行周期为 127分钟。已知引力常量 G6.67×1011N·m2/kg 2,月球 半径约为 1.74 ×103k

52、m。利用以上数据估算月球的质量约为 ( D )A8.1 ×1010kg B 7.4 × 1013kg C 5.4 ×1019kgD7.4 ×1022kg解析: 本题考查万有引力定律在天体中的应用。解题的关键是明确探月卫星绕月球运行的向心Mm4242r3力是由月球对卫星的万有引力提供。由 GMrm2 mr4r2 得 M 4GTr2 ,又 rR 月h,代入数值得月 球质量 M7.4×1022kg,选项 D 正确。3、土星的 9个卫星中最内侧的一个卫星,其轨道为圆形,轨道半径为1.59 ×105 km,公转周期为 18 h 46 min ,则土星的质量为 5.21 × 1026 kg 。4、宇航员站在一颗星球表面上的某高处,沿水平方向抛出一个小球。经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为 L。若抛出时的初速度增大到 2 倍,则抛出点与落地 点之间的距离为 3L 。已知两落地点在同一水平面上,该星球的半径为 R,万有引力常数为 G。求该星球的质量 M。解析: 在该星球表面平抛物体的运动规律与地球表面相同,根据已知条件可以求出该星球表面的加速度;需要注意的是抛出点与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论