版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上2019届四川省成都石室中学高三适应性考试(一)数学(理)试题一、单选题1已知集合,则( )ABCD【答案】B【解析】根据交集的定义,即可求解.【详解】因为,则, 故选:.【点睛】本题考查集合间的运算,属于基础题.2设为虚数单位,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限【答案】A【解析】利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.【详解】,对应的点的坐标为,位于第一象限.故选:A.【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.3计算等于( )ABCD【答案】A【解析】利用诱导公式、特殊角的
2、三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.4党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )ABCD【答案】D【解析】 根据四个列联表中的等高条形图可知, 图中D中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的
3、发展有显著效果,故选D5在长方体中,则直线与平面所成角的余弦值为( )ABCD【答案】C【解析】在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.【详解】在长方体中,平面即为平面,过做于,平面,平面,平面,为与平面所成角,在,直线与平面所成角的余弦值为.故选:C.【点睛】本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.6执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是( )ABCD【答案】B【解析】根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【详解】执行框图如下:
4、初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.7已知平面向量满足与的夹角为,且,则实数的值为( )ABCD【答案】D【解析】由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.8已知三棱柱(
5、 )ABCD【答案】C【解析】因为直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则OD底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R13,即R9若函数的图象经过点,则函数图象的一条对称轴的方程可以为( )ABCD【答案】B【解析】由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.10已知为抛物线的焦点,点在上
6、,若直线与的另一个交点为,则( )ABCD【答案】C【解析】求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,解得,不妨设,则直线的方程为,由,解得,所以.故选:C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.11过点的直线与曲线交于两点,若,则直线的斜率为( )ABC或D或【答案】A【解析】利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛
7、】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.12若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是( )ABCD【答案】B【解析】求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令, 则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.二、填空题13在的展开式中,的系数为_【答案】【解析】根据二项展开式
8、定理,求出含的系数和含的系数,相乘即可.【详解】的展开式中,所求项为:,的系数为.故答案为:.【点睛】本题考查二项展开式定理的应用,属于基础题.14已知矩形 ABCD,AB= 4 ,BC =3,以 A, B 为焦点,且 过 C, D 两点的双曲线的离心率为_.【答案】2【解析】根据为焦点,得;又求得,从而得到离心率.【详解】为焦点 在双曲线上,则又 本题正确结果:【点睛】本题考查利用双曲线的定义求解双曲线的离心率问题,属于基础题.15已知函数,则关于的不等式的解集为_【答案】【解析】判断的奇偶性和单调性,原不等式转化为,运用单调性,可得到所求解集【详解】令,易知函数为奇函数,在R上单调递增,即
9、,即x故答案为:【点睛】本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题16已知数列满足对任意,若,则数列的通项公式_【答案】【解析】由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.【详解】由,得,数列是等比数列,首项为2,公比为2,满足上式,.故答案为:.【点睛】本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.三、解答题17在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表
10、所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.【答案】(1)乙同学正确(2)分布列见解析, 【解析】(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,
11、即可求解.【详解】(1)已知变量具有线性负相关关系,故甲不正确,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:“理想数据”有3个,故“理想数据”的个数的取值为:.,于是“理想数据”的个数的分布列【点睛】本题考查样本回归中心点与线性回归直线方程关系,以及离散型随机变量的分布列和期望,意在考查逻辑推理、数学计算能力,属于中档题.18已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.【答案】(1);(2)4.【解析】(1)利用三角形的面积公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本
12、关系式求得.【详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.19如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.【答案】(1)证明见解析(2)【解析】(1)取中点连接,得,可得,可证,可得,进而平面,即可证明结论;(2)设分别为边的中点,连,可得,可得(或补角)是异面直线与所成的角,可得,为二面角的平面角,即,设,求解,即可得出结论.【详解】(1)证明:取中点连接,由则,则,故
13、,平面,又平面,故平面平面(2)解法一:设分别为边的中点,则,(或补角)是异面直线与所成的角.设为边的中点,则,由知.又由(1)有平面,平面, 所以为二面角的平面角,设则在中,从而在中,又,从而在中,因,因此,异面直线与所成角的余弦值为.解法二:过点作交于点由(1)易知两两垂直,以为原点,射线分别为轴,轴,轴的正半轴,建立空间直角坐标系.不妨设,由,易知点的坐标分别为则显然向量是平面的法向量已知二面角为,设,则设平面的法向量为,则令,则由由上式整理得,解之得(舍)或,因此,异面直线与所成角的余弦值为.【点睛】本题考查空间点、线、面位置关系,证明平面与平面垂直,考查空间角,涉及到二面角、异面直线
14、所成的角,做出空间角对应的平面角是解题的关键,或用空间向量法求角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.20已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求的面积【答案】(1);(2).【解析】(1)由已知根据抛物线和椭圆的定义和性质,可求出,;(2)设直线方程为,联立直线与圆的方程可以求出,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积【详解】(1)焦点为F(1,0),则F1(1,0),F2(1,0),解得,1,1,()由已知,
15、可设直线方程为,联立得,易知0,则因为,所以1,解得联立 ,得,80设,则 【点睛】本题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆,直线与椭圆的位置关系问题 意在考查学生的数学运算能力21已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.【答案】(1)减区间是,增区间是;(2),证明见解析.【解析】(1)当时,求得函数的导函数以及二阶导函数,由此求得的单调区间.(2)令求得,构造函数,利用导数求得的单调区间、极值和最值,结合有两个极值点,求得的取值范围.将代入列方程组,由证得.【详解】(1),又,所以在单增, 从
16、而当时,递减,当时,递增.(2).令,令,则故在递增,在递减,所以.注意到当时,所以当时,有一个极值点,当时,有两个极值点,当时,没有极值点,综上因为是的两个极值点,所以不妨设,得,因为在递减,且,所以又所以【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数研究函数的极值点,考查利用导数证明不等式,考查化归与转化的数学思想方法,属于难题.22在平面直角坐标系中,直线的倾斜角为,且经过点以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C()求出直线的参数方程和曲线C的直角坐标方程;()设直线与曲线C交于P,
17、Q两点,求的值【答案】()(t为参数),;()3.【解析】()直接由已知写出直线l1的参数方程,设N(,),M(1,1),(0,10),由题意可得,即4cos,然后化为普通方程;()将l1的参数方程代入C的直角坐标方程中,得到关于t的一元二次方程,再由参数t的几何意义可得|AP|AQ|的值【详解】()直线l1的参数方程为,(t为参数)即(t为参数)设N(,),M(1,1),(0,10),则,即,即=4cos,曲线C的直角坐标方程为x2-4x+y2=0(x0).()将l1的参数方程代入C的直角坐标方程中,得,即,t1,t2为方程的两个根,t1t2=-3,|AP|AQ|=|t1t2|=|-3|=3【点睛】本题考查简单曲线的极坐标方程,考查直角坐标方程与直角坐标方程的互化,训练了直线参数方程中参数t的几何意义的应用,是中档题23已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【北师】期末模拟卷01【九年级上下全册】
- 2024保育员技师理论考试172题(附答案)
- 让垃圾分类演讲稿范文
- 饮用水安全应急预案
- 脚手架施工方案15篇
- 幼儿园班主任个人工作述职报告
- 煤矿实习总结范文
- 九年级禁止燃放烟花爆竹承诺书(35篇)
- 音乐活动总结
- 22.3 实践与探索 同步练习
- 江西丹康制药有限公司原料药、口服制剂等生产基地项目环境影响报告书
- 物品放行单(标准模版)
- 引水隧洞洞身开挖与支护施工方案
- 成都锦里商街、宽窄巷旧城改造商业案例分析
- 外贸公司组织架构、岗位职责
- 人教版-高一至高三全部英语课文朗读与听力MP3链接
- 第4课 我来画棵“家庭树”第一课时 ppt课件
- ARMA算法整理
- 岛电SR中文说明书
- 地下水八大离子-阴阳离子平衡计算公式
- 部分轮毂的基本知识
评论
0/150
提交评论