版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 函数及其表示方法一、目标认知学习目标: (1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法了解每种方法的优点在实际情 境中,会根据不同的需要选择恰当的方法表示函数;(3)求简单分段函数的解析式;了解分段函数及其简单应用重点: 函数概念的理解,函数关系的三种表示方法分段函数解析式的求法难点: 对函数符号的理解;对于具体问题能灵活运用这三种表示方法中的某种进行分析,什么才算“恰当”?分段函数解析式的求法二、知识要点梳理知识点一、函数的概念1函数的定义设A、B是非空的数集,如果按照某个确定的对
2、应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域.2构成函数的三要素:定义域、对应关系和值域构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全致,即称这两个函数相等(或为同一函数);两个函数相等当且仅当它们的定义域和对应关系完全致,而与表示自变量和函数值的字母无关.3区间的概念(1)区间的分类:开区
3、间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示区间表示: x|axb=a,b; ;.知识点二、函数的表示法1函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系 优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系 优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系 优点:不需计算就可看出函数值.2分段函数: 分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况知识点三、映射与函数1.映射定义: 设A、B是两个非空集合,如果按照某个对应法则f,对于集合
4、A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:AB.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.注意:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数: 设A、B是两个非空数集,若f:AB是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象
5、集合=定义域,值域=象集合.三、规律方法指导1.函数定义域的求法(1)当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.(2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.(3)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.2.如何确定象与原象对于给出原象要求象的问题,只需将原象代入对应关系中,即可求出象.对于给出象,要求原象的问题,可先假设
6、原象,再代入对应关系中得已知的象,从而求出原象;也可根据对应关系,由象逆推出原象.3.函数值域的求法实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的"最高点"和"最低点",观察求得函数的值域;配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些
7、"分式"函数等;此外,使用此方法要特别注意自变量的取值范围;换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域.求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等.总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.经典例题透析类型一、函数概念1.下列各组函数是否表示同一个函数? (1)(2)(3)(4)思路点拨:对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.解:(1),对应关系不同,因此是不同的函数;(2)的定义域不
8、同,因此是不同的函数;(3)的定义域相同,对应关系相同,因此是相同的函数;(4)定义域相同,对应关系相同,自变量用不同字面表示,仍为同一函数.总结升华:函数概念含有三个要素,即定义域,值域和对应法则,其中核心是对应法则,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.举一反三:【变式1】判断下列命题的真假(1)y=x-1与是同一函数;(2)与y
9、=|x|是同一函数;(3)是同一函数;(4)与g(x)=x2-|x|是同一函数.答:从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题.2.求下列函数的定义域(用区间表示). (1); (2);(3).思路点拨:由定义域概念可知定义域是使函数有意义的自变量的取值范围.解:(1)的定义域为x2-20, ;(2);(3).总结升华:使解析式有意义的常见形式有分式分母不为零;偶次根式中,被开方数非负.当函数解析式是由多个式子构成时,要使这多个式子对同一个自变量x有意义,必须取使得各式有意义的各个不等式的解集的交集,因此,要列不等式组求解.举一反三:【变式1】
10、求下列函数的定义域:(1); (2); (3).思路点拨:(1)中有分式,只要分母不为0即可;(2)中既有分式又有二次根式,需使分式和根式都有意义;(3)只要使得两个根式都有意义即可解:(1)当|x-2|-3=0,即x=-1或x=5时,无意义, 当|x-2|-30,即x-1且x5时,分式有意义, 所以函数的定义域是(-,-1)(-1,5)(5,+);(2)要使函数有意义,须使, 所以函数的定义域是;(3)要使函数有意义,须使,所以函数的定义域为-2.总结升华:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的
11、实数的集合;(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合; (即求各集合的交集)(5)满足实际问题有意义.3.已知函数f(x)=3x2+5x-2,求f(3),f(a),f(a+1). 思路点拨:由函数f(x)符号的含义,f(3)表示在x=3时,f(x)表达式的函数值.解:f(3)=3×32+5×3-2=27+15-2=40;.举一反三:【变式1】已知函数.(1)求函数的定义域;(2)求f(-3),的值;(3)当a0时,求f(a)×
12、;f(a-1)的值.解:(1)由;(2);(3)当a0时,.【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:(1)f(2),g(2); (2)f(g(2),g(f(2); (3)f(g(x),g(f(x)思路点拨:根据函数符号的意义,可以知道f(g(2)表示的是函数f(x)在x=g(2)处的函数值,其它同理可得解:(1)f(2)=2×22-3×2-25=-23;g(2)=2×2-5=-1;(2)f(g(2)=f(-1)=2×(-1)2-3×(-1)-25=-20;g(f(2)=g(-23)=2×(-23)-5=-5
13、1;(3)f(g(x)=f(2x-5)=2×(2x-5)2-3×(2x-5)-25=8x2-46x+40; g(f(x)=g(2x2-3x-25)=2×(2x2-3x-25)-5=4x2-6x-55.总结升华:求函数值时,遇到本例题中(2)(3)(这种类型的函数称为复合函数,一般有里层函数与外层函数之分,如f(g(x),里层函数就是g(x),外层函数就是f(x),其对应关系可以理解为,类似的g(f(x)为,类似的函数,需要先求出最里层的函数值,再求出倒数第二层,直到最后求出最终结果.4. 求值域(用区间表示): (1)y=x2-2x+4;.思路点拨:求函数的值域必
14、须合理利用旧知识,把现有问题进行转化.解:(1)y=x2-2x+4=(x-1)2+33,值域为3,+);(2);(3);(4),函数的值域为(-,1)(1,+).类型二、映射与函数5. 下列对应关系中,哪些是从A到B的映射,哪些不是?如果不是映射,如何修改可以使其成为映射? (1)A=R,B=R,对应法则f:取倒数;(2)A=平面内的三角形,B=平面内的圆,对应法则f:作三角形的外接圆;(3)A=平面内的圆,B=平面内的三角形,对应法则f:作圆的内接三角形思路点拨:根据定义分析是否满足“A中任意”和“B中唯一” 解:(1)不是映射,集合A中的元素0在集合B中没有元素与之对应,不满足“A中任意”
15、;若把A改为 A=x|x0或者把对应法则改为“加1”等就可成为映射;(2)是映射,集合A中的任意一个元素(三角形),在集合B中都有唯一的元素(该三角形的外接圆)与 之对应,这是因为不共线的三点可以确定一个圆;(3)不是映射,集合A中的任意一个元素(圆),在集合B中有无穷多个元素(该圆的内接三角形有无 数个)与之对应,不满足“B中唯一”的限制;若将对应法则改为:以该圆上某定点为顶点作正 三角形便可成为映射总结升华:将不是映射的对应改为映射可以从出发集A、终止集B和对应法则f三个角度入手举一反三:【变式1】判断下列两个对应是否是集合A到集合B的映射?A=1,2,3,4,B=3,4,5,6,7,8,
16、9,对应法则A=N*,B=0,1,对应法则f:xx除以2得的余数;A=N,B=0,1,2,f:xx被3除所得的余数;设X=0,1,2,3,4,思路点拨:判断是否构成映射应注意:A中元素的剩余;“多对一”“一对一”构成,而“一对多”不构成映射.解:构成映射,构成映射,构成映射,不构成映射,0没有象. 【变式2】已知映射f:AB,在f的作用下,判断下列说法是否正确?(1)任取xA,都有唯一的yB与x对应;(2)A中的某个元素在B中可以没有象;(3)A中的某个元素在B中可以有两个以上的象;(4)A中的不同的元素在B中有不同的象;(5)B中的元素在A中都有原象;(6)B中的元素在A中可以有两个或两个以
17、上的原象.答:(1)、(6)的说法是正确的,(2)、(3)、(4)、(5)说法不正确.【变式3】下列对应哪些是从A到B的映射?是从A到B的一一映射吗?是从A到B的函数吗?(1)A=N,B=1,-1,f:xy=(-1)x;(2)A=N,B=N+,f:xy=|x-3|;(3)A=R,B=R,(4)A=Z,B=N,f:xy=|x|;(5)A=N,B=Z,f:xy=|x|;(6)A=N,B=N,f:xy=|x|.答:(1)、(4)、(5)、(6)是从A到B的映射也是从A到B的函数,但只有(6)是从A到B的一一映射;(2)、(3)不是从A到B的映射也不是从A到B的函数.6. 已知A=R,B=(x,y)|
18、x,yR,f:AB是从集合A到集合B的映射,f:x(x+1,x2+1),求A中的元素的象,B中元素的原象. 解:A中元素的象为故.举一反三:【变式1】设f:AB是集合A到集合B的映射,其中(1)A=x|x0,B=R,f:xx2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?(2)A=B=(x,y)|xR,yR,f:(x,y)(x-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什么?解:(1)由已知f:xx2-2x-1,所以A中元素的象为; 又因为x2-2x-1=-1有x=0或x=2,因为A=x|x0,所以B中元素-1的原象为2;(2)由已知f:(x,y)(x-
19、y,x+y),所以A中元素(1,3)的象为(1-3,1+3),即(-2,4); 又因为由有x=2,y=1,所以B中元素(1,3)的原象为(2,1).类型三、函数的表示方法7. 求函数的解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x).思路点拨:求函数的表达式可由两种途径.解:(1)f(2x-1)=x2,令t=2x-1,则 ;(2)f(x+1)=2x2+1,由对应法则特征可得:f(x)=2(x-1)2+1 即:f(x)=2x2-4x+3.举一反三:【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x); (2)已知:,求ff(-1).解:(1)
20、(法1)f(x+1)=x2+4x+2=(x+1)2+2(x+1)-1f(x)=x2+2x-1; (法2)令x+1=t,x=t-1,f(t)=(t-1)2+4(t-1)+2=t2+2t-1f(x)=x2+2x-1; (法3)设f(x)=ax2+bx+c则f(x+1)=a(x+1)2+b(x+1)+ca(x+1)2+b(x+1)+c=x2+4x+2;(2)-10,f(-1)=2·(-1)+6=4ff(-1)=f(4)=16.总结升华:求函数解析式常用方法:(1)换元法;(2)配凑法;(3)定义法;(4)待定系数法等.注意:用换元法解求对应法则问题时,要关注新变元的范围.8.作出下列函数的
21、图象. (1);(2);(3); (4).思路点拨:(1)直接画出图象上孤立的点;(2)(3)先去掉绝对值符号化为分段函数.解:(1),图象为一条直线上5个孤立的点;(2)为分段函数,图象是两条射线;(3)为分段函数,图象是去掉端点的两条射线;(4)图象是抛物线.所作函数图象分别如图所示:类型四、分段函数9. 已知,求f(0),ff(-1)的值. 思路点拨:分段函数求值,必须注意自变量在不同范围内取值时的不同对应关系. 解:f(0)=2×02+1=1ff(-1)=f2×(-1)+3=f(1)=2×12+1=3.举一反三:【变式1】已知,作出f(x)的图象,求f(1
22、),f(-1),f(0),fff(-1)+1的值.解:由分段函数特点,作出f(x)图象如下:如图,可得:f(1)=2;f(-1)=-1;f(0)=;fff(-1)+1=ff-1+1=ff(0)=f()=+1.10. 某市郊空调公共汽车的票价按下列规则制定: (1)乘坐汽车5公里以内,票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.解:设票价为y元,里程为x公里, 由空调汽车票价制定的规定,可得到以下函数解析式:
23、根据这个函数解析式,可画出函数图象,如下图所示:举一反三:【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),. 写出y1,y2与x之间的函数关系式?. 一个月内通话多少分钟,两种通讯方式的费用相同?. 若某人预计一个月内使用话费200元,应选择哪种通讯方式?解:y1=50+0.4x,y2=0.6x;: 当y1=y2时,50+0.4x=0.6x,0.2x=50,x=250当一个月内通话250分钟时,两种通讯方式费用相同;: 若某人预计月付资费20
24、0元, 采用第一种方式:200=50+0.4x, 0.4x=150 x=375(分钟) 采用第二种方式:200=0.6x, 应采用第一种(全球通)方式.学习成果测评基础达标一、选择题1判断下列各组中的两个函数是同一函数的为( ),;,;,;,;,A、 B、 C D、2函数y=的定义域是( )A-1x1 Bx-1或x1 C0x1 D-1,13函数的值域是( )A(-,)(,+)B(-,)(,+)CR D(-,)(,+)4下列从集合A到集合B的对应中:A=R,B=(0,+),f:xy=x2;A=-2,1,B=2,5,f:xy=x2+1;A=-3,3,B=1,3,f:xy=|x|其中,不是从集合A到
25、集合B的映射的个数是( )A 1 B 2 C 3 D 45已知映射f:AB,在f的作用下,下列说法中不正确的是( ) A A中每个元素必有象,但B中元素不一定有原象 B B中元素可以有两个原象C A中的任何元素有且只能有唯一的象D A与B必须是非空的数集6点(x,y)在映射f下的象是(2x-y,2x+y),求点(4,6)在f下的原象( )A(,1) B(1,3) C(2,6) D(-1,-3)7已知集合P=x|0x4, Q=y|0y2,下列各表达式中不表示从P到Q的映射的是( )Ay= By= Cy=x Dy=x28下列图象能够成为某个函数图象的是( ) 9函数的图象与直线的公共点数目是( )
26、A B C或 D或10已知集合,且,使中元素和中的元素对应,则的值分别为( )A B C D11已知,若,则的值是( )A B或 C,或 D12为了得到函数的图象,可以把函数的图象适当平移,这个平移是( )A沿轴向右平移个单位 B沿轴向右平移个单位C沿轴向左平移个单位 D沿轴向左平移个单位二、填空题1设函数则实数的取值范围是_2函数的定义域_3函数f(x)=3x-5在区间上的值域是_4若二次函数的图象与x轴交于,且函数的最大值为,则这个二次函数的表达式是_5函数的定义域是_6函数的最小值是_三、解答题1求函数的定义域2求函数的值域3根据下列条件,求函数的解析式:(1)已知f(x)是一次函数,且
27、f(f(x)=4x-1,求f(x);(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(3)已知f(x-3)=x2+2x+1,求f(x+3);(4)已知;(5)已知f(x)的定义域为R,且2f(x)+f(-x)=3x+1,求f(x).能力提升一、选择题1设函数,则的表达式是( )A B C D2函数满足则常数等于( )A3 B-3 C D3已知,那么等于( )A15 B1 C3 D304已知函数定义域是,则的定义域是( )A B C D 5函数的值域是( )A B C D6已知,则的解析式为( )A B C D二、填空题1若函数,则=_2若函数,则=
28、_3函数的值域是_4已知,则不等式的解集是_5设函数,当时,的值有正有负,则实数的范围_三、解答题1设是方程的两实根,当为何值时,有最小值?求出这个最小值2求下列函数的定义域(1); (2)3求下列函数的值域(1); (2)综合探究1某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中,纵轴表示离学校的距离,横轴表示出发后的时间,如图四个图象中较符合该学生走法的是( )2.如图所表示的函数解析式是( )A. B. C. D. 3函数的图象是( )4.如图,等腰梯形ABCD的两底分别为AD=2a,BC=a,BAD=45°,作直线MNAD交AD于M,交折线AB
29、CD于N,记AM=x,试将梯形ABCD位于直线MN左侧的面积y表示为x的函数,并写出函数的定义域.答案与解析: 基础达标一、选择题1C(1)定义域不同;(2)定义域不同;(3)对应法则不同;(4)定义域相同,且对应法则相同;(5)定义域不同2D由题意1-x20且x2-10, -1x1且x-1或 x1,x=±1,选D3B法一:由y=,x= y, 应选B法二:4C提示:不是,均不满足“A中任意”的限制条件5D提示:映射可以是任何两个非空集合间的对应,而函数是要求非空数集之间6A设(4,6)在f下的原象是(x,y),则,解之得x=, y=1,应选A7C0x4, 0x=2,应选C8C9C有可能是没有交点的,如果有交点,那么对于仅有一个函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民营医院规制度
- 装备科工作总结
- 建设施工机械设备合同书(3篇)
- 期末总结范文1200字(32篇)
- 投标保密的承诺书(30篇)
- 大一学生干部个人总结
- 江苏省泰州市(2024年-2025年小学五年级语文)人教版期末考试((上下)学期)试卷及答案
- 公共卫生主题培训
- 世界历史九年级上册教案全册
- DB11T 1133-2014 人工砂应用技术规程
- 广东省特种设备作业人员考试机构申请表
- 第三章-自然语言的处理(共152张课件)
- 2024年人教部编版语文六年级上册第四单元测试题及答案
- 分布式光伏系统组件缺陷检测及诊断技术规范
- 北师大版七年级数学上册期中考试卷
- 企业网站建设及维护服务合同
- 国开2024年秋《经济法学》计分作业1-4答案形考任务
- 2024新信息科技三年级第三单元:畅游网络世界大单元整体教学设计
- 2024-2025形势与政策:促进高质量充分就业 为中国式现代化建设提供有力支撑
- 知道网课智慧《设计创新思维》测试答案
- 生物入侵与生物安全智慧树知到期末考试答案章节答案2024年浙江农林大学
评论
0/150
提交评论