版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上习题11-1 对弧长的曲线积分1.计算下列对弧长的曲线积分:(1),其中为圆周,直线及轴在第一象限内所围成的扇形的整个边界;(2),其中为折线,这里、依次为点、;(3),其中为摆线的一拱,.2.有一段铁丝成半圆形,其上任一点处的线密度的大小等于该点的纵坐标,求其质量。解 曲线的参数方程为 依题意,所求质量习题11-2 对坐标的曲线积分1.计算下列对坐标的曲线积分:(1),其中是抛物线上从点到点的一段弧;(2),其中为圆周(按逆时针方向绕行);(3),其中是从点到点的一段直线;(4),其中为有向闭折线,这里、依次为点、;2.计算,其中是:(1)抛物线上从点到点的一段弧;
2、(2)从点到点的直线段;(3)先沿直线从点到点,然后再沿直线到的折线;(4)曲线,上从点到点的一段弧。3.把对坐标的曲线积分化成对弧长的曲线积分,其中为:(1)在面内沿直线从点到点;(2)沿抛物线从点到点;(3)沿上半圆周从点到点.4.设为曲线,上相应于从变到的曲线弧,把对坐标的曲线积分化成对弧长的曲线积分。习题11-3 格林公式及其应用1. 利用曲线积分,求星形线,所围成的图形的面积。2.计算曲线积分,其中为圆周,的方向为逆时针方向。3. 证明曲线积分在整个面内与路径无关,并计算积分值。.4.利用格林公式,计算下列曲线积分:(1),其中为三顶点分别为、和的三角形正向边界;(2),其中是在圆周
3、上由点到点 的一段弧。5.验证下列在整个平面内是某一函数的全微分,并求这样的一个:(1);(2)6.计算,其中为由点到点的曲线弧解 原积分与路径无关, 故原式 习题11-4 对面积的曲面积分1. 计算曲面积分,其中为抛物面在面上方的部分。2.计算下列对面积的曲面积分:(1),其中为平面在第一卦限中的部分;(2),其中为球面上的部分;3.求抛物面壳的质量,此壳的面密度为.4.计算,其中为锥面及平面所围成的区域的整个边界曲面。解 , ,在上,在面的投影为在上,在面的投影为 习题11-5 对坐标的曲面积分1.计算下列对坐标的曲面积分:(1),其中为球面的下半部分的下侧.(2),其中为连续函数,是平面
4、在第四卦限部分的上侧;2.把对坐标的曲面积分化成对面积的曲面积分,其中(1)是平面在第一卦限的部分的上侧;(2)是抛物面在面上方的部分的上侧;习题11-6 高斯公式1.利用高斯公式计算曲面积分:(1),其中为平面,所围成的立体的表面的外侧.(2),其中是界于和之间的圆柱体的整个表面的外侧;(3),其中为平面,所围成的立方体的全表面的外侧;2.计算曲面积分,其中是曲面的外侧.解 添加平面,取上侧,使构成封闭,应用高斯公式地习题11-7 斯托克斯公式1.利用斯托克公式,计算下列曲线积分:(1),其中为圆周,若从轴的正向看去,这圆周是取逆时针方向;(2),其中为圆周,若从轴正向看去,这圆周是取逆时针方向;(3),其中为圆周,若从轴正向看去,这圆周是取逆时针方向;复习题十一1.计算下列曲线积分:(1),其中为圆周;(2),其中为摆线,上对应从到的一段弧;(3),其中为上半圆周, 沿逆时针方向;2.计算下列曲面积分:(1),其中是界于平面及之间的圆柱面;(2),其中为锥面的外侧.(3),其中为半球面上侧.3.证明:在整个平面除去的负半轴及原点的区域内是某个二元函数的全微分,并求出一个这样的二元函数。4. 计算曲线积分,其中是边长为4,原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年白糖供应与采购合同
- 2025年度航空航天导航系统研发合同3篇
- 《2024版协议离婚申请书范本:专业指导与法律问题解答》3篇
- 2025年度体育场馆场地设施设备租赁及管理服务合同3篇
- 2025版大理石地砖石材回收与资源循环利用合同3篇
- 2025年新能源铲车租赁及维护服务合同3篇
- 2024年瓶装水销售合同范本
- 2025年宠物寄养服务与宠物医疗支持合同3篇
- 【培训课件】JIT精益生产实务
- 2024年铝墙面板安装分包合作协议
- 2025年中国诚通控股集团限公司校园招聘高频重点提升(共500题)附带答案详解
- 《Unit 5 What do we eat 》(说课稿)-2024-2025学年沪教版(2024)英语三年级上册
- 2024年加油站的年度工作总结范文(2篇)
- (新版)广电全媒体运营师资格认证考试复习题库(含答案)
- ISO27001信息安全管理体系培训资料
- 红色经典影片与近现代中国发展学习通超星期末考试答案章节答案2024年
- 基金应知应会专项考试题库(证券类190题)附有答案
- 健康体检的八大意义
- 销售顾问初级认证笔试题
- 市场化人才选聘管理办法
- 急性早幼粒细胞白血病及分化综合征
评论
0/150
提交评论