版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、M/M/1排队系统实验报告一、实验目的本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行比照。二、实验原理根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。1、顾客到达模式设到达过程是一个参数为的Poisson过程,则长度为t的时间内到达k个呼(t)ktPk(t)(*叫的概率服从Poisson分布,即k!,k012,其中0为一常数,表示了平均到达率或Poisson呼叫流的强度。2、服务模式设每个呼叫的持续时间为i,服从参数为的负
2、指数分布,即其分布函数为P(Xt1et,t03、服务规则先进先服务的规则FIFO4、理论分析结果Q在该M/M/1系统中,设,则稳态时的平均等待队长为1,顾客T的平均等待时间为。三、实验内容M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO:先入先出队列方式服务。四、采用的语言MatLab语言源代码:clear;clc;%M/M/1排队系统仿真SimTotal=input(请输入仿真顾客总数SimTotal=);%仿真顾客总数;Lambda=0.4;%到达率Lambda;Mu=0.9;%服务率Mu;t_Arrive=zeros
3、(1,SimTotal);t_Leave=zeros(1,SimTotal);ArriveNum=zeros(1,SimTotal);LeaveNum=zeros(1,SimTotal);Interval_Arrive=-log(rand(1,SimTotal)/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal)/Mu;%服务时间t_Arrive(1)=Interval_Arrive(1);%顾客到达时间ArriveNum(1)=1;fori=2:SimTotalt_Arrive(i)=t_Arrive(i-1)+Interval_Arrive
4、(i);ArriveNum(i)=i;endt_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1;fori=2:SimTotalift_Leave(i-1)t_Arrive(i)t_Leave(i)=t_Arrive(i)+Interval_Serve(i);elset_Leave(i)=t_Leave(i-1)+Interval_Serve(i);endLeaveNum(i)=i;endt_Wait=t_Leave-t_Arrive;%各顾客在系统中的等待时间t_Wait_avg=mean(t_Wait);t_Queue=
5、t_Wait-Interval_Serve;%各顾客在系统中的排队时间t_Queue_avg=mean(t_Queue);Timepoint=t_Arrive,t_Leave;%系统中顾客数随时间的变化Timepoint=sort(Timepoint);ArriveFlag=zeros(size(Timepoint);%到达时间标志CusNum=zeros(size(Timepoint);temp=2;CusNum(1)=1;fori=2:length(Timepoint)if(temp=2QueLength(i)=CusNum(i)-1;elseQueLength(i)=0;endend系统
6、平均等待队QueLength_avg=sum(0QueLength.*Time_interval0)/Timepoint(end);%长%仿真图figure(1);set(1,position,0,0,1000,700);subplot(2,2,1);title(各顾客到达时间和离去时间);stairs(0ArriveNum,0t_Arrive,b);holdon;stairs(0LeaveNum,0t_Leave,y);legend(到达时间,离去时间);holdoff;subplot(2,2,2);stairs(Timepoint,CusNum,b)title(系统等待队长分布);xlab
7、el(时间);ylabel(队长);subplot(2,2,3);title(各顾客在系统中的排队时间和等待时间);stairs(0ArriveNum,0t_Queue,b);holdon;stairs(0LeaveNum,0t_Wait,y);holdoff;legend(排队时间,等待时间);%仿真值与理论值比较disp(理论平均等待时间t_Wait_avg=,num2str(1/(Mu-Lambda);disp(理论平均排队时间t_Wait_avg=,num2str(Lambda/(Mu*(Mu-Lambda);disp(,理论系统中平均顾客数=,num2str(Lambda/(Mu-L
8、ambda);disp(,理论系统中平均等待队长=,num2str(Lambda*Lambda/(Mu*(Mu-Lambda);disp(仿真平均等待时间t_Wait_avg=,num2str(t_Wait_avg)disp(仿真平均排队时间t_Queue_avg=,num2str(t_Queue_avg)disp(,仿真系统中平均顾客数=,num2str(CusNum_avg);disp(仿真系统中平均等待队长=,num2str(QueLength_avg);五、数据结构仿真设计算法主要函数利用负指数分布与泊松过程的关系,产生符合泊松过程的顾客流,产生符合负指数分布的随机变量作为每个顾客的服
9、务时间:Interval_Arrive=-log(rand(1,SimTotal)/Lambda;%到达时间问隔,结果与调用exprnd(1/Lambda,m)函数产生的结果相同Interval_Serve=-log(rand(1,SimTotal)/Mu;%服务时间间隔t_Arrive(1)=Interval_Arrive(1);%顾客到达时间时间计算t_Wait=t_Leave-t_Arrive;%各顾客在系统中的等待时间t_Queue=t_Wait-Interval_Serve;%各顾客在系统中的排队时间由事件来触发仿真时钟的不断推进。每发生一次事件,记录下两次事件间隔的时间以及在该时间
10、段内排队的人数:Timepoint=t_Arrive,t_Leave;%系统中顾客数变化CusNum=zeros(size(Timepoint);CusNum_avg=sum(CusNum_fromStart.*Time_interval0)/Timepoint(end);%系统中平均顾H数计算-QueLength_avg=sum(0QueLength.*Time_interval0)/Timepoint(end);%系统平均等待队长一一学习文档仅供参考六、仿真结果分析顾客的平均等待时间与顾客的平均等待队长,计算其方差如下:仿真顾客总数=10000012345平均值力差平均等待时间2.0231
11、.99711.99451.99612.00432.0030.000556360平均排队时间0.911470.88650.882930.884040.894950.891980.000563657平均顾客数0.81010.798460.793340.799580.804330.801160.000160911平均等待队长0.3650.354440.35120.354120.359150.356780.000116873678910理论值平均等待时间1.97382.00541.99111.99091.99272平均排队时间0.866120.890680.88320.875270.885030.88
12、889中平均顾客数0.785450.80370.797970.791660.800240.8平均等待队长0.344650.356950.353950.348040.355420.35556仿真顾客总数=100000012345平均值力差平均等待时间2.00291.99751.99432.00192.01152.001620.000169888平均排队时间0.892090.886240.884940.8910.898730.89060.000119522平均顾客数0.801570.799550.797630.800130.805310.800840.0000329861平均等待队长0.35702
13、0.354740.353940.356120.359820.356330.000020940n678910理论值平均等待时间1.99911.99081.99652.00161.9962平均排队时间0.886230.881110.88490.889870.886520.88889平均顾客数0.798240.796210.798650.799430.797550.8平均等待队长0.353870.352390.353990.355410.354240.35556从上表可以看出,通过这种模型和方法仿真的结果和理论值十分接近,增加仿真顾客数时,可以得到更理想的结果。但由丁变量定义的限制,在仿真时顾客总数
14、超过1,500,000时会溢出。证明使此静态仿真的思想对排队系统进行仿真是切实可行的。实验结果截图如下SimTotal分别为100、1000、10000、100000:仿真顾客总数为100000和1000000时,其图像与10000的区别很小CommandWindow请输入仿真顾睿总00000理论平均等待时闾t.脸i_理论平均排队时lltWait_avt=O-SS889理论系统中平均顾客敦=0.8理论系统中平麴等待吸长二。,35556仿真平均Wa|Bt_WaLt_av2.0S27仿喜平麴排队时间t_Queuy_acvg=0,39572仿真系统中平均顾客敦=0.80449仿耳系统中平均等待队长=
15、0.35982&/ICommandWindow请输入仿真顾客总5imTotal=lOCOOQC理论苹均等待时间七_盹也奴E理论平珍排队时间t_晌讥_时0.8观&9理论系统中平均顾喜数=0.8理论系统中平均等待队长=0.3555S仿真平均等待日寸间t_Wait_avg=2.0027仿真苹均排队时lB)t_QuevLe_arvs=O.S90SS仿真系统中平均顾客数=o.8om仿真系疏中平均等待队-0.35639fii七、遇到的问题及解决方法1. 在算法设计阶段对计算平均队长时对应的时间段不够活楚,重新画出状态转移图后,引入变量Timepoint用来返回按时间排序的到达和离开的时间点,从而得到正确的时间间隔内的CusNum并由此计算出平均队长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年舞台背景墙体租赁合同版
- 2024年鲁教版选修1化学下册月考试卷
- 2025年人教版(2024)八年级科学下册月考试卷含答案
- 2025年外研版三年级起点六年级数学上册阶段测试试卷含答案
- 2024年鲁科版七年级地理下册月考试卷含答案
- 2025年鲁教版九年级化学下册月考试卷
- 2025年鲁教版九年级物理上册月考试卷
- 二零二五年度北京个人住宅买卖二手房交易合同2篇
- 2024汽车修理配件售后服务与技术支持合同
- 二零二五年度农产品批发市场信息化建设合同3篇
- 2024-2034年全球及中国药用菌行业市场发展分析及前景趋势与投资发展研究报告
- 2024年中小学劳动技能大赛活动方案
- 2024年贵州铁路投资集团有限责任公司招聘笔试参考题库附带答案详解
- 内蒙古呼和浩特市2023-2024学年七年级上学期期末语文试题
- (2024年)消防安全知识培训
- 《胆碱能受体作用药》课件
- 浙江省杭州市余杭区2023-2024学年五年级上学期期末英语试卷
- 中医调节内分泌的方法
- 2020年山西省公务员录用考试《行测》真题及答案
- 微波治疗技术的临床应用指南
- 安徽省合肥市庐阳区部分学校2023-2024学年八年级上学期期末考试英语试题(含答案)
评论
0/150
提交评论