版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 二次函数复习课w1.1.你在哪些情况下见到过抛物线的你在哪些情况下见到过抛物线的“身影身影”? ?用语言或用语言或图象来进行描述图象来进行描述. .w2.2.你能用二次函数的知识解决哪些实际问题你能用二次函数的知识解决哪些实际问题? ?与同伴交与同伴交流流. .w3.3.小结画二次函数图象的方法小结画二次函数图象的方法. .w4.4.二次函数的图象有哪些性质二次函数的图象有哪些性质? ?如何确定它的开口方向、如何确定它的开口方向、对称轴和顶点坐标对称轴和顶点坐标? ?请用具体例子进行说明请用具体例子进行说明. .w5.5.用具体例子说明如何更恰当或更有效地利用二次函数用具体例子说明如何
2、更恰当或更有效地利用二次函数的表达式、表格和图象刻画变量之间的关系的表达式、表格和图象刻画变量之间的关系. .w6.6.用自己的语言描述二次函数用自己的语言描述二次函数y=axy=ax2 2+bx+c+bx+c的图象与方程的图象与方程axax2 2+bx+c=0+bx+c=0的根之间的关系的根之间的关系. .回顾与思考 知识框架二次函数二次函数定义图象相关概念抛物线对称轴顶点性质和图象开口方向、对称轴、顶点坐标增减性解析式的确定一般式 y=ax2+bx+c顶点式 y=a(x-h)2+k关联二次函数与一元二次方程的关系知识点1、二次函数的定义定义:一般地,形如y=ax+bx+c(a,b,c是常数
3、,a 0)的函数叫做x的二次函数.提示:(1)关于x的代数式一定是整式,a,b,c为常数,且 a0.(2)等式的右边最高次数为2,可以没有一次项 和常数项,但不能没有二次项.(一)抛物线(一)抛物线y = axy = ax 2 2(a0) (a0) 的图象特点的图象特点 向上向上向下向下直线x=0(y轴)(0,0)向上向上向下向下直线x=0(y轴)(0,k)知识点2、二次函数的图象与性质(二)抛物线(二)抛物线y = axy = ax 2 2+k+k(a0) (a0) 的图象特点的图象特点向上向上向下向下直线直线x=h (h,0)(三)抛物线y = a(x-h)2 ( a0 ) 的图象特点(四
4、) 抛物线y = a(x-h)2 +k (a 0) 的图象特点向上向上向下向下 直线直线x=h (h,k)1、平移关系、平移关系2、顶点变化、顶点变化当当h0时时,向向右右平移平移当当h0时时,向向上上平移平移当当k0a 0-4ac 0有一个交点有一个交点有两个相等的实数根有两个相等的实数根b b2 2-4ac = 0-4ac = 0没有交点没有交点没有实数根没有实数根b b2 2-4ac 0-4ac 01.已知二次函数y=ax2+bx+c的图象如图所示,请根据图象判断下列各式的符号:a 0 ,b 0, c 0 , 0 , a-b+c_0, a+b+c 0=2.已知二次函数y=ax+bx+c的
5、部分图象如图所示,则关于x的一元二次方程ax+bx+c=0的解为_.310 xy3.若无论x取何实数,二次函数y=ax2+bx+c的值总为负,那么a、c应满足的条件是( )A.a0且b2-4ac0 B.a0且b2-4ac0C.a0且b2-4ac0 D.a 0且b2-4ac 0 C二次函数的应用最大值问题(1)最大利润问题;(2)最大面积问题解:设旅行团人数为x人,营业额为y元,则 y例1:某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?(元)时
6、,当最大值30250y55x30250)55(10110010)30(1080022xxxxx答:当旅行社的人数是55人时,旅行社可以获得最大的营业额。最大利润问题方法1:解:如图,设矩形的一边AB=x m,那么另一边BC=(15-x) m,面积为S m2,则例1:如图,假设篱笆(虚线部分)的长度是15m,如何围篱笆才能使其所围成矩形的面积最大?B BD DA AC C)(25.56422544y)( 5 . 72152bx0115)15(222cmabaccmaaxxxxS时当最大值最大面积问题方法2:解:如图,设矩形的一边AB=x m,那么另一边BC=(15-x) m,面积为S m2,则例
7、1:如图,假设篱笆(虚线部分)的长度是15m,如何围篱笆才能使其所围成矩形的面积最大?B BD DA AC C)(25.56y)(5.7x0125.56)5.7(15)15(222cmcmaxxxxxS最大值时当23.如图,在ABC中,AB=AC=10,BC=12,在ABC中截出一个矩形DEFG,其中D,G分别在AB和AC边上,EF在BC边上.设EF=x,矩形DEFG的面积为y,写出y与x之间的函数关系,列出表格,并画出相应的函数图象.根据三种表示方法回答下列问题:(1)自变量x的取值范围是什么?(2)图象的对称轴和顶点坐标分别是什么?(3)你能描述y随x的变化而变化的情况吗?5.当运动中的汽
8、车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v来表示,其中v(km/min)表示汽车的速度.(1)列表表示I与v的关系;(2)当汽车的速度增加到原来的2倍时,撞击影响扩大到原来的多少倍?图象的性质(二)图象的性质(二)6.自由落体运动是由于引力的作用而造成的,地球上物体自由下落的时间t(s)和下落的距离h(m)的关系式是h=4.9t.我们知道,对同一物体,月球的引力大约是地球引力的 ,因此月球上物体自由下落的时间t(s)和下落的距离h(m)的关系大约是h=0.8t.(1)在同一直角坐标系中画图,分别表示地球、月球上h和t的关系.(2)比较物体下
9、落4s时,在地球上和月球上分别下落的距离;(3)比较物体下落10m时,在地球上和月球上分别所需要的时间(结果精确到0.1s)6111.正方形的边长是x,面积是A,周长是l.(1)分别写出A,l与x的关系式;(2)在同一直角坐标系中画出(1)中两个函数的图象,比较它们的变化趋势;(3)你所画的函数A=x的图象与函数y=x的图象有什么不同?为什么?12.已知平行四边形的高与底边的比是h:a=2:5,用表达式表示平行四边形的面积S与它的底边a的关系,并从图象观察平行四边形的面积随其底边的变化而变化的情况.13.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=4x- x刻画,斜坡可以用一次
10、函数y= x刻画.(1)求小球到达的最高点的坐标;(2)小球的落点是A,求点A的坐标.121216.科研人员在测试一枚火箭向上竖直升空时,获得火箭的高度h(m)于时间t(s)的关系数据如下:(1)根据上表,以时间t为横轴、高度h为纵轴建立直角坐标系,并描出上述各点.(2)你能根据坐标系中各点的变化趋势确定h关于t的函数类型吗?(3)你能确定h关于t 的函数表达式吗?(4)你能求出该火箭的高度射程是多少吗?你是根据哪种表示方式求解的?19.相框边的宽窄影响可放入相片的大小.如图,相框长26cm,宽22cm,相框边的宽xcm,相框内的面积为ycm.(1)写出y与x的函数关系式;(2)画出这个函数的
11、图象;(3)当x=1,1.5,2时,分别可以放入多大的相片?1.两个数的和为6,这两个数的积最大可以达到多少?利用图象描述乘积与因数之间的关系.18.把一个数a拆成两数之和,何时它们的乘积最大?你能得出一个一般性的结论吗?函数的应用(一)函数的应用(一)4.把一根长120cm的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和最小是多少?10.写出等边三角形的面积S与其边长a之间的关系式,并分别计算当a=1,3,2时三角形的面积.14.如图,假设篱笆(虚线部分)的长度是15m,如果围篱笆才能使其所围矩形的面积最大?15.如图(单位:m),等腰直角三角形ABC以2m/s的速度沿直线l向正方
12、形移动,直到AB与CD重合.设xs时,三角形与正方形重叠部分的面积为y. (1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?复习题15.gsp17.如图,喷水池的喷水口位于水池中心,离水面高为0.5m,喷出的水流呈抛物线形状,最高点离水面 m,落水点离水池中心1m.请建立适当的直角坐标系,用函数表达式描述左右两边的两条水流,并说明自变量的取值范围.16920.竖直向上发射的物体的高度h(m)满足关系式h=-5t+v t,其中t(s)是物体运动时间,v (m/s)是物体被发射时的速度.某公园计划设计园内喷泉,喷水的
13、最大高度要求达到15m,那么喷水的速度应该达到多少?(结果精确到0.01m/s).21.如图,隧道的截面由抛物线和长方形构成.长方形的长为16m,宽为6m,抛物线的最高点C离地面AA 的距离为8m.(1)按如图所示的直角坐标系,求表示该抛物线的函数表达式;(2)一大型货运汽车装载某大型设备后高为7m,宽4m.如果该隧道内设双向行车道,那么这辆货车能否安全通过?22.一座抛物线型拱桥如图所示,桥下面宽度是4m,拱顶到水面的距离是2m.当水面下降1m后,水面宽度是多少?(精确到0.1m)24.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,成本与销售月份之间的关系如图(2)所示(图(1)的图
14、象是线段,图(2)的图象是抛物线),哪个月出售这种蔬菜,每千克的收益最大?(收益=售价-成本)3.求下列二次函数的图象与x轴的交点坐标,并画草图验证.(1)y=x+6x+9; (2)y=9-4x; (3)y=(x+1)-9; 8.方程-x+2x+ =0的根与二次函数y=-x+2x+ 的图象之间有什么关系?7.求二次函数y=x-x-5的图象与一次函数y=2x-1的图象的交点坐标.请利用函数表达式、表格和图象三种方法求解.1212二次函数与方程的关系二次函数与方程的关系25.(1)如图,第n个图形中有多少个小正方形?你是如何计算的?(2)求1+3, 1+3+5, 1+3+5+7, 1+3+5+7+9, ,1+3+5+7+9+ +(2n-1).二次函数的综合应用二次函数的综合应用26.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《土木工程专业英语 第2版》 课件 Unit9 Passive Base Isolation with Merits and Demerits Analysis
- 《SAP公司简介》课件
- 2024年度安全生产工作计划范文
- 20年学校七五普法工作计划
- 八年级美术教学计划
- 教学能手工作站工作计划
- 《光的本质之争》课件
- 2024教师教学学期计划
- 小学生安全习惯工作计划
- 四年级数学(上)计算题专项练习及答案
- 实验一 伐倒木材积测定
- 7.《大雁归来》课件(共20张PPT)
- 标准茶园建设与高效栽培技术PPT通用课件
- 国际交流英语视听说B1U1--参考答案(章节课程)
- 土方场地移交单范本
- 国开2022年春季《小学数学教学研究》形考任务1-4题库及答案
- 幼儿园绘本:《下雪了》 PPT课件
- 第16课-熔盐电解槽(3)
- 先天性甲状腺功能减低症PPT学习教案
- 美学原理考试试题及答案
- 天定公路质量问题分析
评论
0/150
提交评论