版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载考点一、圆的相关概念1 1、圆的定义在一个平面内,线段 0A0A 绕它固定的一个端点 0 0 旋转一周,另一个端点 A A 随之 旋转所形成的图形叫做圆,固定的端点 0 0 叫做圆心,线段 0A0A 叫做半径2 2、圆的几何表示以点 0 0 为圆心的圆记作 0 0”,读作“圆 0 0”考点二、弦、弧等与圆有关的定义(1)(1)弦连接圆上任意两点的线段叫做弦。(如图中的 ABAB )(2)(2) 直径经过圆心的弦叫做直径。(如途中的 CDCD) 直径等于半径的 2 2 倍。(3)(3)半圆 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆(4)(4)弧、优弧、劣弧 圆上
2、任意两点间的部分叫做圆弧,简称弧。弧用符号 S S”表示,以 A A,B B 为端点的弧记作“証”,读作“圆弧 ABAB ”或“弧ABAB ”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两 个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论 1 1: (1 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2) 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3) 平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。推论 2 2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为:过圆心垂直于弦直
3、彳径 平分弦I I 知二推三平分弦所对的优弧平分弦所对的劣弧 考点四、圆的对称性1 1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴2 2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。考点五、弧、弦、弦心距、圆心角之间的关系定理1 1、圆心角顶点在圆心的角叫做圆心角。2 2、弦心距从圆心到弦的距离叫做弦心距。3 3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心 距相等。圆知识点学案学习必备欢迎下载推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心 距中有一组量相等,那么它们所对应的其余各组
4、量都分别相等。考点六、圆周角定理及其推论1 1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。2 2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。推论 1 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧 也相等。推论 2 2:半圆(或直径)所对的圆周角是直角;9090的圆周角所对的弦是直径。 推论 3 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角 形。考点七、点和圆的位置关系设。O O 的半径是 r r,点 P P 到圆心 0 0 的距离为 d d,则有:dvr=dvr=点 P P 在。0 0 内;d=r=d=r=点 P P 在O0 0
5、 上;dr=dr=点 P P 在O0 0 夕卜。考点八、过三点的圆1 1、过三点的圆不在同一直线上的三个点确定一个圆。2 2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。3 3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。4 4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。考点九、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1) 相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的 割线,公共点叫做交点;(2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的 切线,(3) 相离:
6、直线和圆没有公共点时,叫做直线和圆相离。如果。0 0 的半径为 r r,圆心 0 0 到直线 I I 的距离为 d,d,那么:学习必备欢迎下载直线 I I 与O0 0 相交=drdrdr; 考点十、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角即:在。O O 中,四边 ABCDABCD 是内接四边形AZ ZC C +NBAD+NBAD =180=180 N NB B+N+ND D =180=180。 . .DAEDAE C C考点一、切线的性质与判定定理1 1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即: M
7、NMN 丄 OAOA 且 MNMN 过半径 OAOA 外端AMNMN 是OO O 的切线2 2、性质定理:切线垂直于过切点的半径(如上图) 推论 1 1:过圆心垂直于切线的直线必过切点。 推论 2 2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出 最后一个。考点十二、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即: PAPA、PBPB 是的两条切线APAPA 二 PBPB ; POPO 平分 BPABPA考点十三、圆幕定理1 1、相交弦定理:圆内两弦
8、相交,交点分得的两条线段的乘积相等。 即:在。O O 中,弦 ABAB、CDCD 相交于点 P P,APAPA PBPB 二 PCPC 卩 D D推论:如果弦与直径垂直相交,那么弦的一半是它分直径 所成的两条线段的比例中项。即:在OO O 中,直径 ABAB 丄 CDCD,ACE2=AE BE2 2、切割线定理:从圆外一点引圆的切线和割线, 点的两条线段长的比例中项。即:在OO O 中 PAPA 是切线,PBPB 是割线CABDA学习必备欢迎下载2二 PA = PC PB3 3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的 两条线段长的积相等(如右图)。即:在。O O 中
9、PBPB、PEPE 是割线 PCPC,PBPB = = PDPD PEPE考点十四、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦 如图:00002垂直平分 ABAB。即:TOOi、OO2相交于 A A、B B 两点二 Q0Q02垂直平分 ABAB考点十五、圆的公切线 两圆公切线长的计算公式:(1 1)公切线长:Rt.QO2C中,AB2ng2电。2_CO22;(2)外公切线长:CO2是半径之差; 内公切线长:CO2是半径之和 考点十六、三角形的内切圆和外接圆1 1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。2 2、三角形的内心三角形的内切圆的圆心是三角
10、形的三条内角平分线的交点,它叫做三角形的内 心。考点十七、圆和圆的位置关系1 1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种 如果两个圆有两个公共点,那么就说这两个圆相交。2 2、 圆心距两圆圆心的距离叫做两圆的圆心距。3 3、 圆和圆位置关系的性质与判定设两圆的半径分别为 R R 和 r r,圆心距为 d d,那么两圆外离=dR+rdR+r两圆外切二 d=R+rd=R+r两圆相交二 R-rvdvR+rR-rvdvR+r (R R r r)两圆内切二 d=R-rd=R-r (RrRr
11、)两圆内含二 dR-rdrRr)学习必备欢迎下载4 4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的 连心线;相交的两个圆的连心线垂直平分两圆的公共弦。考点十八、圆内正多边形的计算1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。2 2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就 是这个正多边形的外接圆。3 3、正三角形在。O O 中 ABCABC 是正三角形,有关计算在 R RtB B O O 中进行:O D: B D O BV73 : 24 4、 正四边形同理,四边形的有关计算在 Rt
12、 OAE 中进行,OE: AE:OA=1:1: .2:5 5、 正六边形RtRt OABOAB 中进行,AB:OB:OA=1:、3:2. .考点十九、与正多边形有关的概念1 1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。2 2、 正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。3 3、 正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。4 4、 中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角 考点二十、正多边形的对称性1 1、正多边形的轴对称性正多边形都是轴对称图形。一个正 n n 边形共有 n n 条对称轴,每条对称
13、轴都通过正 n n 边形的中心。2 2、正多边形的中心对称性 边数为偶数的正多边形是中心对称图形,它的对称中心是正多同理,六边形的有关计算在COD学习必备欢迎下载边形的中心。学习必备欢迎下载3 3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。考点二十一、弧长和扇形面积1 1、弧长公式n n的圆心角所对的弧长 I I 的计算公式为 I I 二互1801802 2、扇形面积公式 s 扇 nR?3602其中 n n 是扇形的圆心角度数,R R 是扇形的半径,I I 是扇形的弧长3 3、圆锥的侧面积1S 丨 *2 二 r -二 rl2其中 I I 是圆锥的母线长,r r 是圆锥的地面半径。考点二十三、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不 正确,从而得到原命题成立,这种证明方法叫做反证法。考点二十二、内切圆及有关计算。(1 1)(2)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。ABCA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广安职业技术学院《短片拍摄与剪辑》2023-2024学年第一学期期末试卷
- 三年级科学下册第一单元土壤与生命3肥沃的土壤教案苏教版
- 药品知识培训课件
- 产品成本控制教学培训课件
- 《糖尿病足的预防》课件
- 确保培训课件内容
- 《氧化硫满意》课件
- 《汉字的演变过程》课件
- 培训课件专员
- 学校保卫检查考核奖惩制度
- 暖通工程合同
- 2024年营销部工作人员安全生产责任制(2篇)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之3:4组织环境-4.1理解组织及其环境(雷泽佳编制-2025B0)
- 2024年国家低压电工电工作业证理论考试题库(含答案)
- 2025年上半年山西吕梁市柳林县招聘毕业生70人到村(社区)工作(第二批)重点基础提升(共500题)附带答案详解
- 2024年非煤矿山年终安全生产工作总结
- 部编版2024-2025学年三年级上册语文期末测试卷(含答案)
- 研发部年终总结(33篇)
- 一年级数学计算题专项练习1000题集锦
- 2024年高考物理模拟卷(山东卷专用)(考试版)
- 湖北省武汉市青山区2022-2023学年五年级上学期数学期末试卷(含答案)
评论
0/150
提交评论