




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录 上页 下页 返回 结束 习题课一、导数和微分的概念及应用一、导数和微分的概念及应用二、导数和微分的求法二、导数和微分的求法 导数与微分 第二章 目录 上页 下页 返回 结束 一、一、 导数和微分的概念及应用导数和微分的概念及应用 导数导数 :xxfxxfxfx)()(lim)(0当时,为右导数当时,为左导数0 x)(xf0 x)(xf 微分微分 :xxfxfd)()(d 关系关系 : 可导可微( 思考 P125 题1 )目录 上页 下页 返回 结束 应用应用 :(1) 利用导数定义解决的问题 (3)微分在近似计算与误差估计中的应用(2)用导数定义求极限1) 推出三个最基本的导数公式及求导
2、法则xxxCxcos)(sin;)(ln;0)(1其他求导公式都可由它们及求导法则推出;2) 求分段函数在分界点处的导数 , 及某些特殊函数在特殊点处的导数;3) 由导数定义证明一些命题.目录 上页 下页 返回 结束 例例1.1.设)(0 xf 存在,求.)()(lim0200 xxfxxxfx解解: : 原式=xxfxxxfx )()(lim02002)( xx2)( xx)(0 xf 目录 上页 下页 返回 结束 例例2.2.若0) 1 (f且) 1 (f 存在 , 求.tan) 1(e)cos(sinlim20 xxxfxx解解: 1)cos(sinlim20 xxx原式 =220)co
3、s(sinlimxxxfx且0) 1 (f联想到凑导数的定义式220) 1cossin1 (limxxxfx1cossin2xx1cossin2xx) 1 (f) 1 (f )211 ( ) 1 (21f x目录 上页 下页 返回 结束 例例3.3.设)(xf在2x处连续,且, 32)(lim2xxfx求. )2(f 解解:)2(f)(lim2xfx)2()()2(lim2xxfxx02)2()(lim)2(2xfxffx2)(lim2xxfx3思考思考 : 书P125 题2 ; 3目录 上页 下页 返回 结束 例例4.4.设1eelim)() 1() 1(2xnxnnbaxxxf,试确定常数
4、a , b. )(xf 解解: :)(xf1x,bxa 1x, ) 1(21ba1x,2x,1时x;)(axf时,1x.2)(xxf) 1 ()1 ()1 (fff) 1 () 1 (ff得处可导,在利用1)(xxf即ba1) 1(21ba2a使 f (x) 处处可导,并求目录 上页 下页 返回 结束 , 1,2ba2) 1 ( f1,21,2)(xxxxf)(xf 是否为连续函数 ?判别判别:,1时x,)(axf时,1xxxf2)(ba1) 1(21ba2a存在) 1 (f目录 上页 下页 返回 结束 )(xf设0)(,xxf在讨论解解:)(lim0 xfx又xfxfx)0()(lim0例例
5、5.所以 )(xf0 x在处连续. 即)(xf0 x在处可导 .xxx1sinlim20)0(0fxxx1sinlim000,1sin2xxx0,0 x处的连续性及可导性. xxxx120sinlim0)0( f目录 上页 下页 返回 结束 二、二、 导数和微分的求法导数和微分的求法1. 正确使用导数及微分公式和法则 2. 熟练掌握求导方法和技巧(1) 求分段函数的导数注意讨论界点界点处左右导数是否存在和相等(2) 隐函数求导法对数微分法(3) 参数方程求导法极坐标方程求导(4) 复合函数求导法(可利用微分形式不变性)转化转化(5) 高阶导数的求法逐次求导归纳; 间接求导法;利用莱布尼茨公式.
6、导出导出目录 上页 下页 返回 结束 例例6.6.设, )(arctansinee1sinxxxfy其中)(xf可微 ,.y求解解:yd)d(esinesin xx)d(sineesinxx)d(arctan)(arctan11xxf )d(sinesinesinxxx)d(ecoseesinxxx)d(11)(arctan1112xxxfxxxxd )sine(cosesinxfxxd)(arctan1112xyyddxxcosee目录 上页 下页 返回 结束 例例7.7.,有定义时设)(0 xgx 且)(xg 存在, 问怎样选择cba,可使下述函数在0 x处有二阶导数)(xf解解: 由题设)0(f 存在, 因此1) 利用)(xf在0 x连续, 即, )0()0()0(fff得)0(gc 2) 利用, )0()0(ff0)0()(lim)0(0 xgxgfx)0( g0)0()(lim)0(20 xgcbxxafxb而)0( gb得0,2xcbxax0, )(xxg目录 上页 下页 返回 结束 )0( gb3) 利用, )0()0( ff0)0()(lim)0(0 xgxgfx)0( g0)2(lim)0(0 xbbxafxa2而得)0(21 ga)0(gc )(xf0,2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《2025建筑设备租赁合同 建筑设备租赁合同书》
- 2025员工临时借用合同书范文
- 2025年合伙企业合作合同模板
- 职业技术学院2024级建设工程管理专业人才培养方案
- 2025关于房屋评估委托合同范本
- 2025安全设备租赁合同安全设备租赁合同书
- 省住房城乡建设行业社团履行相关规定情况调查表
- 浙江国企招聘2025温州市国有资本投资运营有限公司招聘3人笔试参考题库附带答案详解
- 2025版权转让协议格式技术许可合同书
- 精神康复服务的跨学科合作模式考核试卷
- 特斯拉国产供应链研究报告
- 如何进行医疗垃圾的安全运输
- 公共停车场建设项目可行性研究报告
- 保安服务标准及工作流程
- 2024年中考数学几何模型归纳(全国通用):18 全等与相似模型之十字模型(学生版)
- 外科疾病分级目录
- 国家级教学成果的培育提炼与申报
- 海南师范大学《高等数学》2020-2021期末试卷B
- 2023年09月黑龙江省大兴安岭地区“黑龙江人才周”校园引才活动引进90名人员笔试历年难易错点考题荟萃附带答案详解
- 直播佣金直播合同带货
- 点凸焊操作工艺规程
评论
0/150
提交评论