版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上毕业设计报告(论文)题目: 配电网潮流计算方法分析与实现 所属系 电子工程系 专 业 电气工程及其自动化 学 号 姓名 指导教师 起讫日期 2010.3 - 2010.6 设计地点 毕业设计报告(论文)诚信承诺 本人承诺所呈交的毕业设计报告(论文)及取得的成果是在导师指导下完成,引用他人成果的部分均已列出参考文献。如论文涉及任何知识产权纠纷,本人将承担一切责任。 学生签名: 日 期:摘要配电网潮流计算是配电管理系统高级应用软件功能组成之一。本课题在分析配电网元件模型的基础上,建立了配电网潮流计算的数学模型。由于配电网的结构和参数与输电网有很大的区别,因此配电网的潮流计
2、算必须采用相适应的算法。配电网的结构特点呈辐射状,在正常运行时是开环的;配电网的另一个特点是配电线路的总长度较输电线路要长且分支较多,配电线路的线径比输电网细导致配电网的R/X较大,且线路的充电电容可以忽略。配电网的潮流计算采用的方法是前推回代法,文中对前推回代法的基本原理、收敛性及计算速度等进行了理论分析比较。仿真算例表明,前推回代法具有编程简单、计算速度快、收敛性好的特点,此方法是配电网潮流计算的有效算法,具有很强的实用性。关键词配电网,潮流计算,前推回代法AbstractFlow solution of distribution networks is one of software i
3、n DMS. Because of the different structures between transmission networks and distribution networks, the corresponding methods in flow solution of distribution networks must be applied. Distributions network is radial shape and in the condition of regular is annular. Another characteristic of distrib
4、ution networks is cabinet minister of distribution long than transmission networks. The line diameter of distribution networks is thin than transmission networks, it cause R/X is large of distribution networks and the lines capacitance can neglect. Load flow calculation of distributions network use
5、back/ forward sweep. It has some peculiarities such as simple procedures and good restrain and so on. This method of distribution network is an effective method of calculating the trend, with some practicality. Key words :distribution network,load flow calculation,back/ forward sweep 目录摘要IIIAbstract
6、IV附录1:外文资料翻译附录2:源程序专心-专注-专业1 绪论1.1 配电网的分类在电力网中重要起分配电能作用的网络就称为配电网;配电网按来分类,可分为高压配电网(35110KV),中压配电网(610KV,苏州有20KV的),低压配电网(220/380V);在负载率较大的特大型城市,220KV电网也有配电功能。按供电区的功能来分类,可分为城市配电网,农村配电网和工厂配电网等。在城市电网系统中,主网是指110KV及其以上电压等级的电网,主要起连接区域高压(220KV及以上)电网的作用配电网是指35KV及其以下电压等级的电网,作用是给城市里各个配电站和各类用电负荷供给电源从投资角度看,我国与国外先
7、进国家的发电、输电、配电投资比率差异很大,国外基本上是电网投资大于电厂投资,输电投资小于配电投资。我国刚从重发电轻供电状态中转变过来,而在供电投资中,输电投资大于配电投资。从我国城网改造之后,将逐渐从输电投资转入配电建设为主。本文是基于前推回代法的配电网潮流分析计算的研究,研究是是以根节点为10kV的电压等级的配电网。1.2 配电网运行的特点及要求配电系统相对于输电系统来说,由于电压等级低、供电范围小,但与用户直接相连,是供电部门对用户服务的窗口,因而决定了配电网运行有如下特点和基本要求:(1) 10kV中压配电网在运行中,负荷节点数多,一般无表计实时记录负荷,无法应用现在传统潮流程序进行配电
8、网的计算分析,要求建立新的数学模型和计算方法。(2) 随着铁道电气化和用户电子设备的大量使用,配电网运行中有大量的谐波源、三相电压不平衡、电压闪变等污染,要求准确测量与计算配电网中的谐波分布,从而采取有效措施抑制配电网运行中的谐波危害。(3) 由于环保条件日趋严格的制约,要求配电网运行能制定不影响城市绿化、防火、防爆、防噪音等技术和组织措施,以便减少配电网运行对环境的污染。(4) 随着用户对供电可靠性和电压质量指标的提高,还靠人工操作已无法适应,要求现代配电网运行不断提高自动化、智能水平。由于“电能”作为商品将进入市场竞争,要求各电力公司采用需求侧管理和用户电力技术,以降低配电网运行的线损和年
9、运行费用,提高运行的经济性,从而降低配电成本,并积极协助用户搞好优化用电计划、节约用电,推行战略节电和战略负荷开拓等积极措施,进一步提高对用户的服务质量和降低供电企业的成本,达到双方受益的目的。1.3 配电网潮流计算的意义配电网潮流计算是配电网网络分析的基础,配电网的网络重构、故障处理、无功优化和状态估计等都需要用到配电网的潮流数据。由于配电网结构特点都是开环运行的,配电网呈辐射状,配电线路的电阻电抗比(RX)较大,利用常规方法进行潮流计算会导致算法不收敛,而前推回代法是线性收敛的,解决了潮流计算收敛难的问题。近年来,开发配电管理系统(DMS)成为人们研究的热点。而配电网潮流计算作为 DMS的
10、高级应用软件之一,更是整个问题研究和分析的基础。1.4 配电网潮流计算的研究现状配电网潮流计算是电网经济运行、系统分析的重要基础。配电网不仅呈辐射状运行结构, 而且分支多,各馈线之间基本没有联系,与输电网络结构有明显差异,正常运行的配电网具有辐射状网络结构、负荷节点数量很多、线路RX较大等特点,所以传统的潮流计算方法如:牛顿法、PQ 分解法等在配电网潮流计算中不再适用。近年来,许多学者对配电网潮流计算展开大量的研究,并出现了许多计算配电网潮流的算法,主要有:回路阻抗法,改进牛顿法,快速解耦法,前推回代法等。虽然有些学者为使快速解偶法能在配电网得以继续应用而做了一些有益的尝试,如应用补偿技术处理
11、RX较大的线路,但这些方法都使算法复杂化,丧失了快速解偶算法原有的计算量小,收敛可靠的特点。潮流算法多种多样,但一般要满足四个基本要求:I.可靠收敛,II.计算速度快,III.使用方便灵活,IV.内存占用量少。他们也是对潮流算法进行评价的主要依据。前推回代法在配电网潮流计算中简单实用,所有的数据都是以矢量形式存储,因此节省了大量的计算机内存,对于任何种类的配电网只要有合理的RX值,此方法均可保证收敛。算法的稳定性也是评价配电网潮流算法的重要指标。一般情况下,算法的收敛阶数越高,算法的稳定性越差,前推回代法的收敛阶数为一阶,因此它也具有较好的稳定性。比较而言,前推回代法充分利用了网络呈辐射状的结
12、构特点,数据处理简单,计算效率高,具有较好的收敛性,被公认是求解辐射状配电网潮流问题的最佳算法之一。1.5 Matlab运用的简介1.5.1Matlab简介目前电子计算机已广泛应用于电力系统的分析计算,潮流计算是其基本应用软件之一。现有很多潮流计算方法。对潮流计算方法有五方面的要求:(1)计算速度快(2)内存需要少(3)计算结果有良好的可靠性和可信性(4)适应性好,亦即能处理变压器变比调整、系统元件的不同描述和与其它程序配合的能力强(5)简单。 MATLAB是一种交互式、面向对象的程序设计语言,广泛应用于工业界与学术界,主要用于矩阵运算,同时在数值分析、自动控制模拟、数字信号处理、动态分析、绘
13、图等方面也具有强大的功能。MATLAB程序设计语言结构完整,且具有优良的移植性,它的基本数据元素是不需要定义的数组。它可以高效率地解决工业计算问题,特别是关于矩阵和矢量的计算。MATLAB与C语言和FORTRAN语言相比更容易被掌握。通过M语言,可以用类似数学公式的方式来编写算法,大大降低了程序所需的难度并节省了时间,从而可把主要的精力集中在算法的构思而不是编程上。另外,MATLAB提供了一种特殊的工具:工具箱(TOOLBOXES).这些工具箱主要包括:信号处理(SIGNAL PROCESSING)、控制系统(CONTROL SYSTEMS)、神经网络(NEURAL NETWORKS)、模糊逻
14、辑(FUZZY LOGIC)、小波(WAVELETS)和模拟(SIMULATION)等等。不同领域、不同层次的用户通过相应工具的学习和应用,可以方便地进行计算、分析及设计工作。MATLAB设计中,原始数据的填写格式是很关键的一个环节,它与程序使用的方便性和灵活性有着直接的关系。原始数据输入格式的设计,主要应从使用的角度出发,原则是简单明了,便于修改。1.5.2 Matlab中矩阵的运算矩阵是MATLAB数据存储的基本单元,而矩阵的运算是MATLAB语言的核心,在MATLAB语言系统中几乎一切运算均是以对矩阵的操作为基础的。矩阵的基本数学运算包括矩阵的四则运算、与常数的运算、逆运算、行列式运算、
15、秩运算、特征值运算等基本函数运算,这里进行简单介绍。四则运算矩阵的加、减、乘运算符分别为“+,*” ,用法与数字运算几乎相同,但计算时要满足其数学要求 在MATLAB中矩阵的除法有两种形式:左除“”和右除“/”。在传统的MATLAB算法中,右除是先计算矩阵的逆再相乘,而左除则不需要计算逆矩阵直接进行除运算。通常右除要快一点,但左除可避免被除矩阵的奇异性所带来的麻烦。在MATLAB6中两者的区别不太大。与常数的运算 常数与矩阵的运算即是同该矩阵的每一元素进行运算。但需注意进行数除时,常数通常只能做除数。基本函数运算矩阵的函数运算是矩阵运算中最实用的部分,常用的主要有以下几个:det(a) 求矩阵
16、a的行列式eig(a) 求矩阵a的特征值inv(a)或a (-1) 求矩阵a的逆矩阵rank(a) 求矩阵a的秩trace(a) 求矩阵a的迹(对角线元素之和)我们在进行工程计算时常常遇到矩阵对应元素之间的运算。这种运算不同于前面讲的数学运算,为有所区别,我们称之为数组运算。基本数学运算数组的加、减与矩阵的加、减运算完全相同。而乘除法运算有相当大的区别,数组的乘除法是指两同维数组对应元素之间的乘除法,它们的运算符为“.*”和“./”或“.”。前面讲过常数与矩阵的除法运算中常数只能做除数。在数组运算中有了“对应关系”的规定,数组与常数之间的除法运算没有任何限制。另外,矩阵的数组运算中还有幂运算(
17、运算符为 . )、指数运算(exp)、对数运算(log)、和开方运算(sqrt)等。有了“对应元素”的规定,数组的运算实质上就是针对数组内部的每个元素进行的。矩阵的幂运算与数组的幂运算有很大的区别。逻辑关系运算 逻辑运算是MATLAB中数组运算所特有的一种运算形式,也是几乎所有的高级语言普遍适用的一种运算。1.6 本课题要完成的工作详细分析配电网潮流计算的原理及相关的方法,了解各自的特点并比较优劣性,明确配电网潮流计算的意义。由于配电线路的电阻电抗比较大,对常规的潮流计算也可能存在不收敛的问题。本文详细讨论基于前推回代的潮流计算方法,对前推回代法的基本原理、收敛性以及计算速度进行理论分析,总结
18、其相对于其他几种方法的优点。构建配电网络模型,给出原始数据以及程序实现的框图,编写程序计算该系统的潮流,并将结果以较清晰的界面反应,数据结果在论文中以表格的形式列出。使用MATLAB软件进行实例仿真分析。2 电力网基本元件模型图2.1 电力线路的单相等值电路图配电网中基本元件很多,如变压器、线路、电容器、调相机、电容器等等,配电网中基本元件很多,如变压器、线路、电容器、调相机、电容器等等,本章主要介绍线路模型、变压器模型以及负荷模型。122.1 线路模型电力系统中线路模型就是以电阻、电抗、电纳、电导来表示的它们的等值电路。按式 求得单位长度导线的电阻、电抗、电纳、电导后,就可作最原始的电力线路
19、等值电路如图3.1所示。这是单相等值电路。之所以可用单相等值电路代表三相,一方面由于本书中讨论的三相对称运行方式,另一方面也因设架空线路都已经整循环换位。以单相等值电路代表三相虽已经简化了不少计算,但由于电力线路的长度往往有数十乃至数百公里,如将每公里的电阻、电抗、电纳、电导都一一绘于图上,所得的等值电路仍十分复杂。何况,严格说来,电力线路的参数是十分均匀分布的,即使是极短的一段线路,都有相应大小的电阻、电抗、电纳、电导。换言之即使如此复杂的等值电路,也不能认为精确。但好在电力线路一般不长,需分析的又往往只是它们的端点状况两端电压、电流、功率,通常可不考虑线路的这种分布参数,只是在个别情况下才
20、要用双曲函数研究具有均匀分布参数特性的线路。以下,先讨论一般线路的等值电路。所谓一般线路,指中等及中等以下长度线路。对架空线路,这长度大约为300km;对电缆线路,大约为100km。线路长度不超过这些数值时,可不考虑它们的分布参数特性,而只用将线路参数简单地集中起来的电路表示。在以下的讨论中,R(),X(),G(S),B(S)分别表示全线路每相的总电阻、电抗、电纳、电导。显然线路长度为l(km)时 (2.1)通常,由于线路导线截面积的选择,如前面所述,以晴朗天气不发生电晕为前提,而沿绝缘子的泄漏又很小,可设G=0。一般线路中,又有短线路和中等长度线路之分。 图2.2 短线路的等值电路图Z所谓短
21、线路,是指长度不超过100km的架空线路。线路电压不高时,这种线路导纳B的影响一般不大,可略去。从而,这种线路的等值电路最简单。只有一串联的总电抗,如图2.2所示。 显然,如果电缆线路不长,电纳的影响不大时,也可采用这种等值电路。由图2.2可得 (2.2)将式(2.2)与电路理论课程中介绍过的两端口或四端网络方程式 (2.3)相比较,可得这种等值电路的通用常数A、B、C、D (2.4)所谓中等长度电路,是指长度在100km 300km之间的架空线路和不超过100km的电缆线路。这种线路的电纳B一般不能略去。这种线路的等值电路有二种形等值电路和T形等值电路,如图2.3(a)(b)所示。其中,通常
22、是形等值电路。在形等值电路中,除串联的线路总阻抗外,还将线路的总导纳分为两半,分别并联在线路的始末端。在T形等值电路中,线路的总导纳集中在中间,而线路的总阻抗则分为两半,分别串联在它的两侧。因此,这两种电路都是近似的等值电路,而且,相互间并不等值,即它们不能用-Y变换公式相互变换。由图2.3(a)可得,流过串联阻抗Z的电流为I2+Y÷2U2,从而 (2.5)流入始端导纳的电流为,从而 (2.6)由此又可得 (2.7)将式(2.7)与式(2.3)相比较,可得这种等值电路的通用常数 (2.8) Z/2 Z/2ZY (a) (b)(a) 形等值电路(b) T形等值电路图2.3 中等长线路的
23、等值电路图相似的可以到图2.3(b)所示等值电路的通用常数 (2.9)2.2 变压器的模型2.2.1 三绕组变压器的参数和数学模型2.2.1.1 阻抗由于变压器短路损耗近似等于额定电流流过变压器时高低压绕组中的总铜耗,即而铜耗与电阻之间有如下的关系 可得式中,、以V、VA为单位,以W为单位。如改以kV,改以MVA为单位,则可得 (2.10)式中 变压器高低压侧绕组的总阻抗(); 变压器的短路损耗(kW); 变压器的额定容量(MVA); 变压器的额定电压(kV);在电力系统计算中,求取变压器电抗的方法和电机学课程中介绍的略有不同。由于大容量变压器的阻抗中以电抗为主,亦即变压器的电抗和阻抗数值上接
24、近相等,可大致认为变压器的短路电压百分值%与变压器的电抗有如下关系%从而 (2.11)式中 变压器高低压侧绕组的总电抗(); %变压器的短路电压百分值; 、的代表意义与上面相同。2.2.1.2 导纳变压器的励磁支路有两种表示方式,即以阻抗表示和以导纳表示。前者在电机学课程中常用,后者则在电力系统计算中常用。它们分别示于图2.4(a)(b)。而与之对应的空载运行时的电压、电流相量图则示于图2.5(a)(b)。 变压器励磁支路一导纳表示时,其对应的是变压器的铁耗。因变压器的铁耗近似与变压器的空载损耗相等,电导也可于空载损耗相对应。而由图2.4(b)可见,两者之间有如下关系 (2.12)式中 变压器
25、的电导(S); 变压器的空载损耗(kW); 变压器的额定电压(kV)(a)励磁支路以阻抗表示时(b)励磁支路以导纳表示图2.4 双绕组变压器的等值电路图由图2.5(b)可见,变压器空载电流中流经电纳的部分占很大的比重,从而,它和空载在电流在数值上接近相等,可以代替求取变压器的电纳。亦即,由于 (2.13)而 (2.14)而得 (2.15)将代入,最后得 (2.16)式中 变压器的电纳(S); 变压器的空载电流百分数; 、的代表意义与(2.10)同。(a)励磁支路以阻抗表示时 (b)励磁支路以导纳表示图2.5 双绕组变压器空载运行的相量图求得变压器的阻抗、导纳后,即可作变压器的等值电路。变压器的
26、等值电路有两种,即形等值电路和T形等值电路。在电力系统计算中,通常用形等值电路,且将励磁支路接在电源侧。这种等值电路就如图2.4(b)所示。2.2.2 三绕组变压器的参数和数学模型计算三绕组变压器各绕组阻抗的方法虽与计算双绕组变压器的方法没有本质的区别,但是由于三绕组变压器各绕组的容量比有不同组合,而各绕组在铁芯上的排列又有不同方式,计算时需注意。2.2.2.1 电阻 三绕组变压器按三个绕组容量比的不同有三种不同的类型.第种为100/100/100,即三个绕组的容量都等于变压器的额定容量;第种100/100/50,即第三绕组的容量仅为变压器额定容量的 50%;第种为100/50/100,即第二
27、绕组的容量仅为变压器额定容量的50%。目前已在系统中使用的三绕组变压器,从制造厂收集到的往往是它的三个绕组两两作短路实验时测得的短路损耗。如该变压器属第一类型,可由提供的短路损耗、直接按下式求取各绕组的短路损耗 (2.17)然后按与双绕组变压器相似的公式计算各绕组电阻 (2.18)如该变压器属第、第种类型,则制造厂提供的短路损耗数据是一对绕组中容量较小的一方达到它本身的额定容量,即时的值。这时,应首先将各绕组间的短路损耗数据归算为额定电流的值,在运用上列公式求取各绕组的短路损耗和电阻。例如,对100/50/100类型变压器,制造厂提供的短路损耗、都是第二绕组中流过它本身的额定电流,即二分之一变
28、压器额定电流时测得的数据。因此,应首先将它们归算到对应于变压器的额定电流 (2.19)然后再按式(2.17)(2.18)计算。但按新颁布的标准,制造厂对三绕组变压器只给出一个短路损耗最大短路损耗。所谓最大的短路损耗,指两个100%容量绕组中流过的额定电流,另一个100%或50%容量绕组空载时的损耗。由这可求得这两个100%容量绕组的电阻。然后根据“按同一电流密度选择各绕组导线截面积”的变压器设计原则,可得另一个100%容量绕组的电阻就等于这两个绕组之一的电阻;或另一个50%容量绕组的电阻就等于这两个绕组之一电阻的两倍。换言之,这时的计算公式为 (2.20)2.2.2.2 电抗三绕组变压器按其三
29、个绕组排列方式的不同有两种不同结构,分别为升压结构和降压结构。升压结构变压器的中压绕组最靠近铁芯低压绕组居中,高压绕组在最外层。降压结构变压器的低压绕组最靠近铁芯,中压绕组居中,高压绕组仍在最外层。绕组排列方式不同,绕组间漏抗从而短路电压也就不同。如设高压、中压、低压绕组分别为一、二、三次绕组,则应升压结构变压器的高、中压绕组相隔最远,二者间漏抗最大,从而短路电压最大,而、就较小。降压结构变压器高、低压绕组相隔最远,最大,而、则较小。排列方式虽有不同,但求取两种变压器电抗的方法不同,即由各绕组两两之间的短路电压、求出各绕组的短路电压。 (2.21)在按与双绕组变压器相似的计算公式求各绕组的电抗
30、 (2.22)应该指出,求电抗和求电阻时不同,无论按新旧标准,制造厂提供的短路电压总是归算到各个绕组中通过变压器额定电流时的数值。因此,计算电抗时,对第、类变压器,其短路电流电压不需再归算。求取三绕组变压器导纳的方法和求取双绕组变压器导纳的方法相同。2.3 负荷模型在电力系统的稳态分析中,负荷的数学模型最简单,就是以给定的有功功率和无功功率表示。只有在对计算精度要求较高时,才需计及负荷的静态特性。负荷的静态特性可以用函数或多项式表示,如静态电压特性可为也可为:式中 在额定电压下的有功功率、无功功率负荷; P、Q电压偏离额定值时的有功功率、无功功率负荷;待定的系数,它们的数值可通过拟合相应的特性
31、曲线而得。一般可将与节点有关的负荷模型描述为 (2.23)式中,U为节点实际电压;为节点参考电压。如果式(3.23)中,S为恒功率负荷;如果,S为恒电流负荷;如果,S为恒阻抗负荷。为了讨论方便,假定S为恒阻抗负荷,则有 (2.24)因此,可以将节点的恒阻抗表示为 (2.25)式中为节点的电压。一般认为节点负荷为恒功率的,对于运行在正常工作条件下的配电系统,其节点电压变化幅度在5%以内,可以认为节点电压是恒定的,此时恒功率负荷可以作为恒阻抗负荷来处理。2.4电力系统节点分类用一般的电路理论求解网络方程,目的是给出电压源(或电流源)研究网络内的电流(或电压)分布,作为基础的方程式,一般用线性代数方
32、程式表示。然而在电力系统中,给出发电机或负荷连接母线上电压或电流(都是向量)的情况是很少的,一般是给出发电机母线上发电机的有功功率(P)和母线电压的幅值(U),给出负荷母线上负荷消耗的有功功率(P)和无功功率(Q)。主要目的是由这些已知量去求电力系统内的各种电气量。所以,根据电力系统中各节点性质的不同,很自然地把节点分成三类: PQ节点对这一类点,事先给定的是节点功率(P,Q),待求的未知量是节点电压向量(U,),所以叫PQ节点。通常变电所母线都是PQ节点,当某些发电机的输出功率P。Q给定时,也作为PQ节点。PQ节点上的发电机称之为PQ机(或PQ给定型发电机)。在潮流计算中,系统大部分节点属于
33、PQ节点。 PU节点这类节点给出的参数是该节点的有功功率P及电压幅值U,待求量为该节点的无功功率Q及电压向量的相角。这类节点在运行中往往要有一定可调节的无功电源。用以维持给定的电压值。通常选择有一定无功功率储备的发电机母线或者变电所有无功补偿设备的母线做PU节点处理。PU节点上的发电机称为PU机(或PU给定型发电机) 平衡节点在潮流计算中,这类节点一般只设一个。对该节点,给定其电压值,并在计算中取该节点电压向量的方向作为参考轴,相当于给定该点电压向量的角度为零。也就是说,对平衡节点给定的运行参数是U和,因此有城为U节点,而待求量是该节点的P。Q,整个系统的功率平衡由这一节点承担。关于平衡节点的
34、选择,一般选择系统中担任调频调压的某一发电厂(或发电机),有时也可能按其他原则选择,例如,为提高计算的收敛性。可以选择出线数多或者靠近电网中心的发电厂母线作平衡节点。以上三类节点4个运行参数P。Q。U。中,已知量都是两个,待求量也是两个,只是类型不同而已。2.5 小结本章讨论了线路模型、变压器模型和负荷模型,分别介绍了它们各自的特点,以及它们阻抗的计算方法。还有关于电力系统节点的分类。线路模型:一般可分为型等值电路和T型等值电路,本文研究的是短线路线路的模型,是用的型等值电路。变压器:可分为双绕组变压器、三绕组变压器和耦合变压器,本文主要讨论的双绕组和三绕组的变压器模型。介绍了双绕组变压器、三
35、绕组变压器的电抗、阻抗的求解方法。电力网负荷模型:本文主要介绍的是用无功和有功功率表示的。电力系统节点分类:PQ节点,PV节点,平衡节点。 3 配电网潮流计算的介绍与分析3.1配电网潮流计算的概述3.1.1 潮流计算的概述潮流计算就是采用一定的方法确定系统中各处的电压和功率分布。电力系统的潮流计算和一般交流电路计算的根本差别在于:后者已知和待求的是电压和电流,而前者是电压和功率。正是这一差距决定了二者本质上的不同:描述交流电路特性的方程,如节点电压、回路电流方程,是线性方程,而描述电力系统稳态运行特性的潮流方程是非线性方程。3.1.2 配电网潮流计算的概念因为配电网线路中的R/X 比值偏大使快
36、速PQ解耦法潮流计算方法失效,所以人们根据辐射配电网的特点,提出了一些计算方法。常规算法主要有基于导纳矩阵或回路阻抗矩阵的算法(牛顿 拉夫逊(N-R)算法、电源叠加法和追赶法,基于支路变量的潮流算法如支路电流回代法和支路功率前推回代法等。牛顿拉夫逊法潮流算法具有二阶收敛特性,虽然在配电网潮流中收敛速度较快,但是,当导纳矩阵阶数较高时,初值敏感性问题比较突出。电源叠加法每次求解时要对各个电源逐一进行叠加,求解较为繁锁。追赶法用于导纳矩阵主对角严格占优情况下,无收敛性问题、矩阵存储方便、占内存少、求解快速,但是不能直接求解复杂的环网。前推回代法具有编程简单、没有复杂的矩阵运算、计算速度快、占用计算
37、机的资源很少、收敛性好等特点,适用于在实际配电网中的应用。配电网潮流算法是配电网网络分析的基础,配电网的网络重构、故障处理、无功优化和状态估计等都需要用到配网潮流的数据。因此,一套性能优良的配电网潮流程序是开发DMS系统的关键。配电网的潮流计算同时也是研究配电网稳态运行的一项基本运算。根据给定系统的网络结构及运行条件来确定整个系统的运行状态:主要是各个节点的电压(幅值和相角),网络中功率分布及功率损耗等。它既是对配电网规划设计和运行方式的合理性、可靠性及经济性进行定量分析的依据,有是电力系统静态和暂态稳定计算的基础。3.2 配电网潮流计算的基本要求配电网潮流计算一般要满足下例要求:1可靠收敛;
38、2计算速度快;3使用方便灵活,调整和修改容易,可满足工程上的需求;4内存占用量少等。由于配电网的收敛问题比较突出,因此对配电网的潮流算法进行评价时,首先看它能否可靠收敛,然后在此基础上可对计算提出进一步要求。3.3 配电网潮流计算的特点电力系统潮流计算的研究自1956年由JBWord开始,至今历久不衰。从早期的高斯塞德尔迭代法发展到牛顿拉夫逊法,进而到国内外目前广泛采用的PQ分解法,人们已研究出了多种有效的潮流计算方法,然而这些一般都只适用于输电网络中,对于低压配电网络其应用效果并不显著,这是因为低压配电网与输电网不同,低压配电网网络拓扑呈辐射状,线路的R /X很高,一般而言,配电系统正常运行
39、时呈树状结构。这些特点导致网络的雅克比矩阵的条件数变大,出现不同程度的病态特征,传统的潮流计算方法如牛顿&拉夫逊法及快速解偶法在计算配电网潮流时收敛效率不高。配电网的网络呈辐射状,在正常运行时是开环的,只有在倒换负荷或发生故障时才有可能出现短时环网运行情况。配电网的另一个特点是配电线路的总长度较输电线路要长且分支较多,配电线的线径比输电网细导致配电网的R /X较大,且线路的充电电容可以忽略。由于配电线路的R /X较大,无法满足P、Q 解耦条件Gi < Bi,所以在输电网中常用的快速解耦算法(FDLF)在配电网中则难以收敛。3.4 配电网潮流计算的方法3.4.1 主干馈线配电网潮流
40、计算在典型的配电网络中,一般仅有根节点的节点电压固定不变,而其他节点都可视为PQ节点。如图4.1所示,配电网仅有一条主干馈线,n个节点,n-1 条支路。在根节点电压和节点负荷功率已知的情况下通过以下步骤可以求出全网节点电压和功率分布。 图3.1 配电网主馈线图1. 节点电压计算考虑1和2两节点,电压降落为: (3.1) (3.2) 由式(3.1)和式(3.2)可以得到两点间电压降落的纵分量和横分量分别为: (3.3a) (3.3b)暂时忽略横分量的影响,则节点2电压幅值计算如下:由上式可以得到如下式(3.4)式的计算公式: (3.4)将计算结果代入式(3.3b)式中,计算出电压降落横分量,并由
41、下式计算两节点间相角偏差:同时可用横分量对式(3.4)中计算的电压幅值进行修正。对于图3.1的系统,从式(3.4)式中可以得出各节点电压计算的递推公式: (3.5)在上式中电压的单位为KV,阻抗的单位为,功率的单位为MVA。2.节点功率计算 支路功率损耗 (3.6a) (3.6b)为支路数。 节点功率 (3.7a) (3.7b),为为节点数。从式(3.7a)和式(3.7b)可以看出节点处的功率为节点后所有节点负荷功率和支路损耗功率之和。3.收敛条件以前后两次迭代的电压偏差作为迭代收敛条件,下式表明节点电压幅值最大偏差小于设定阀值,即认为迭代收敛,则迭代过程结束。通过以上分析得到单一分支配电网潮
42、流计算步骤:(1)初始化,令所有支路功率损耗为零;(2)根据式(3.7a )和式(3.7b)两式计算各节点功率;(3)根据式(3.5a )和式(3.5b)两式计算各节点电压幅值和相角增量。根据前后两次迭代的电压偏差是否小于设定阈值判断是否收敛,如果不小于设定阈值,则进行下一步,否则停止迭代过程。(4)根据式(3.6a)和式(3.6b)计算各支路的功率损耗,返回步骤1。3.4.2 主干馈线有旁侧分支的配电网潮流计算如图3.2所示的配电网有6条分支、28个节点和27条支路。为了更好地描述分支情况,定义以下3个数组:图3.2 一辐射状配电网Snodej:用于存放分支源节点的编号。Fnodej:用于存
43、放分支中除源节点外的第一个节点的编号。Enodej:用于存放分支中最后一个节点的编号。对于图3.2所示的网络,其值如表1 所示。表3.1 网络分支编号表分支序号SnodeiFnodeiEnodei112102411153516164617215722266827281.从分支序号最大的分支回推计算节点功率对于分支L其上所有节点功率计算如下:令则计算公式如下: (3.8a) (3.8b)公式(3.8a)和(3.8b)只考虑节点负荷和支路损耗功率,对于联接分支的节点(如图3.2中的节点4)没有考虑分支上的功率,因此在计算此类节点功率时,应补回该分支总功率(不考虑节点SnodeL与节点FnodeL之
44、间支路功率损耗时,总功率等于节点FnodeL上的功率),即: (3.9a) (3.9b) 上两式中M表示节点SnodeL处的分支集合,和分别为补偿分支总功率后节点SnodeL的有功和无功功率。2.从分支1开始前推计算节点电压对于分支L,首先考虑节点FnodeL电压的计算:令 得 (3.10)而对于其他节点,电压幅值计算如下:令 式中则 (3.11)3.各分支中支路功率损耗计算根据支路编号原则,支路序号应为受端节点序号减1,则对于分支L,其上各支路功率损耗计算如下:令式中则 (3.12a) (3.12b)重复进行以上三个步骤直接收敛条件满足。3.5 辐射状配电网潮流计算方法比较根据配电网辐射状网
45、络的特点, 以支路电流或母线电压为研究对象, 建立运算模型。具有算法简单, 能够可靠收敛的特点。这些算法可以分成如下两类:1母线类算法此类方法以母线的注人量为自变量列出潮流方程,这一类算法中比较常见的有Zbus法,Ybus法,这两类算法在本质上是一致的,这里给出一种Zbus法。根据叠加原理,母线的电压可以通过根节点(松弛节点)在母线上产生的电压与母线上的等值注入电流所产生的电压降叠加求得。这里等值注入电流指的是除根节点以外的其他配电网元件如负荷、电容电抗器、无功补偿器等在它们所连的母线上产生的等值注入电流。Zbus法的求解过程如下: 图3.3 简单配电网1) 计算当松弛节点独立作用于整个配电网
46、且所有的等值注入都断开的情况下各母线的电压。 (3.13)式中 为松弛节点电压,为网络的等值阻抗,为待求点的等值阻抗;2) 计算各母线的等值注入电流;3) 计算只有等值注入电流作用(没有松弛节点)时的母线电压; (3.14)4) 应用叠加原理 (3.15)式中 5) 检验迭代收敛条件 (3.16)2支路类算法配电网支路类算法是配电网潮流算法中种类最多的一种算法。也是被广泛研究的一种配电网潮流算法。此类方法以配电网的支路数据为研究对象列出潮流方程,此类方法面向支路前推回代。典型算法有以支路电流为状态量的回路法 ,以支路网损为状态量的前推回代法。(1) 回路法图3.4 简单配电网对于图3.4所示简
47、单配电网: (3.17)式中为结点的注入电流,是结点的电压,为结点的注入功率。根据Kchhoff定律 (3.18) 式中 (3.19)为第条支路的电压降,为第条支路的支路阻抗。为第条支路的支路电流。式(3.19)写成矩阵形式: (3.20)根据KCL,有如下形式: (3.21)潮流计算步骤如下:1) 通过式(3.17)计算;2) 通过式(3.21)计算;3) 通过式(3.20)计算;4) 通过式(3.18)计算;5) 判断是否收敛。如果不满足收敛条件用代替进入下一步迭代。(2)前推回代法前推回代法是配电网支路类算法中被广泛研究的一种方法。该方法从根节点起按广度优先搜索并对配电网进行分层编号,编号反映了前推回代的顺序。考虑到配电网的辐射型结构,其一般是由一条主馈线带有数条分支,各分支又带有各自的子分支,依次类推。定义主馈线为第一层,从左向右依次定义主馈线上的各节点,然后定义离电源最近的节点的分支线及其上的节点.每一层最后一个节点号要比它的下一层的第一个节点号小1。此方法简便、有效,利于编程,对于任何复杂的辐射状配电网的网络编号都适用。具体编号方法可见图3.5,其中 代表层,( )代表支路号、数字代表节点号。图3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第六章 数据的分析 6.1 平均数(第2课时)说课稿2024-2025学年北师大版八年级数学上册
- 2 平行四边形的初步认识(说课稿)-2024-2025学年二年级上册数学 苏教版
- 《月球-地球的卫星》说课稿-2023-2024学年科学三年级下册教科版
- 6《陶罐和铁罐》说课稿-2023-2024学年三年级下册语文统编版
- 人教版七年级上册历史与社会第四单元第三课IT新城:班加罗尔 说课稿
- 第四单元《家乡文化生活》说课稿 2024-2025学年统编版高中语文必修上册
- 2025年度餐饮品牌连锁经营合作协议3篇
- Unit 1 Traveling - reading说课稿 2024-2025学年牛津译林版八年级英语下册
- 《装扮布艺笔筒》(说课稿)辽师大版三年级上册综合实践活动
- 专业技术服务委托协议模板(2024年修订)版B版
- 2025年湖北武汉工程大学招聘6人历年高频重点提升(共500题)附带答案详解
- 【数 学】2024-2025学年北师大版数学七年级上册期末能力提升卷
- GB/T 26846-2024电动自行车用电动机和控制器的引出线及接插件
- 辽宁省沈阳市皇姑区2024-2025学年九年级上学期期末考试语文试题(含答案)
- 绿城物业室内公共区域清洁作业规程
- 封条模板A4直接打印版
- 危险货物道路运输企业安全检查通用清单
- 用友NC财务软件操作手册
- 眼内炎患者护理查房
- 电工维修培训资料 维修电工技术学习 维修电工常识 电工培训ppt课件
- 扑克牌24点练习题大全
评论
0/150
提交评论