(参考答案)福州市年高中毕业班综合质量检测数学_第1页
(参考答案)福州市年高中毕业班综合质量检测数学_第2页
(参考答案)福州市年高中毕业班综合质量检测数学_第3页
(参考答案)福州市年高中毕业班综合质量检测数学_第4页
(参考答案)福州市年高中毕业班综合质量检测数学_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021 年 3 月福州市高中毕业班质量检测评分说明:1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细那么。2对计算题,当考生的解答在某一步出现错误时,如果后继局部的解答未改变该题的内容和难度,可视影响的程度决定后继局部的给分,但不得超过该局部正确解容许给分数的一半;如果后继局部的解答有较严重的错误,就不再给分。3解答右端所注分数,表示考生正确做到这一步应得的累加分数。4只给整数分数。一、单项选择题:此题共 8 小题,每题5 分,共 40 分1C2B3B4A5D6C7D8C二、多项选择题:此题共 4 小题,每题5 分,共 20

2、 分9AC10ABD11BCD12BCD三、填空题:本大题共 4 小题,每题5 分,共 20 分13-2,414515251612四、解答题:本大题共 6 小题,共 70 分17. 本小题总分值10分【命题意图】本小题主要考查等比数列、 an 与 Sn 的关系、数列求和等根底知识;考查推理论证能力、运算求解能力;考查化归与转化思想、函数与方程思想;考查逻辑推理、数学运算等核心素养,表达根底性、综合性总分值10 分【解答】1选,即 Sn=2an+1那么当n =1时,S1 =2a1 +1,故a1 =-1;········

3、;···············································1 分当n2时,Sn-1=2an-

4、1+1,两式相减得an=2an-1,···············································

5、·············3 分所以an为等比数列,其中公比为2,首项为-1·································

6、;····4 分所以an =-2n-1···········································

7、83;······································5 分选,即a1=-1,log2(anan+1)=2n-1所以当n2时,log2(anan+1)-log2(an-1an)=2,·

8、;······································1 分即 an+1 = 4,·········

9、83;·················································

10、83;···························2 分an-1所以a2k-1k ÎN* 为等比数列,其中首项为 a =-1 ,公比为 4,12k -1所以a=-1´ 4k -1 =-2(2k-1)-1 ········

11、··················································

12、····3 分由a1=-1,log2(a1a2)=1,得a2=-2,n2k同理可得,a=-2´4k-1=-22k-1kÎN*··································

13、3;·········4 分综上,a =-2n-1······································&#

14、183;········································5 分选,即a2 =aa,S =-3,a =-4n+1n n+223所以an为等比数列,设其公比为q,·

15、;··················································

16、;·1 分ìïa(1+q)=-3,ìa =-1,ìa1 =-9 ,那么í1ïa q2 =-4 ,解得1q = 2,ïíq =-2 .·······························

17、83;···········3 分î1îïî3í或又因为a 为单调数列,所以 q 0 ,故ìa1 =-1,·····4 分îníq = 2 ,··················&

18、#183;·············n所以a =-2n-1··································&#

19、183;···············································5 分n2由1知, -na

20、=n × 2n-1 ,所以Tn=1+2´2+3´22+(n-1)×2n-2+n×2n-1, ···································· 6分2Tn =2+2&#

21、180;22+(n-2)×2n-2+(n-1)×2n-1+n×2n, ······················7 分两式相减得-Tn=1+2+22+2n-2+2n-1-n×2n·············&#

22、183;··························8 分=(2n-1)-n×2n····················

23、········································9 分所以Tn=(n-1)×2n+1 ······

24、··················································

25、···············10 分18. 本小题总分值12分【命题意图】本小题主要考查解三角形等根底知识;考查推理论证能力、运算求解能力; 考查函数与方程思想、数形结合思想;考查直观想象、逻辑推理、数学运算等核心素养,表达根底性、综合性总分值12 分【解答】解法一:1因为 a+b=ccosB-bcosC,由正弦定理得sinA+sinB=sinCcosB-sinBcosC,······

26、····························· 2分因为sin(B+C)=sin(-A)=sinA,所以sin(B+C)+sinB= sinCcosB-sinBcosC,··········

27、3;······························3 分所以2sinBcosC+sinB=0,················

28、··················································

29、 4分因为BÎ(0,),所以sinB ¹0,所以cosC=-1,······································5 分2又CÎ(0,),所以C=2.·&

30、#183;·················································&

31、#183;················ 6分32因为CD 是ABC 的角平分线,且C =2 ,3所以ÐACD=ÐBCD =························

32、83;···················7 分3在ABC 中, S ABC =S ACD +SBCD ,那么由面积公式得1CA×CBsin2=1CA×CDsin+1CD×CBsin, ················

33、···················· 10分232323即CA×CB=CA×CD+CD×CB.······················

34、3;········································11分两边同时除以CA×CB×CD得1 +1 =1 .···

35、83;········································12 分CACBCD解法二:1因为 a+b=ccosB-bcosC,a2 +c2-b2a2 +b2 -c2由余弦定

36、理得a+b=c×-b×,··································· 2分2ac2ab整理得2a(a+b)=2c2 -2b2,即a2 +b2 -c2 +ab=0,···

37、83;····························· 3分所以ab(1+2cosC)=0,·················&#

38、183;·················································&#

39、183;···4 分所以cosC=-1,············································&

40、#183;···································5 分2又CÎ(0,),所以C=2.··········&#

41、183;·················································&#

42、183;······· 6分32因为CD 是ABC 的角平分线,且C =2 ,3所以ÐACD=ÐBCD =·································

43、3;········7 分3在ABC 中,由正弦定理得CAsinB=CB =sin AABsin 23, ··································

44、83;···········8 分即 CAsinB=CB =sin AADsin + DBsin ································

45、3;·····························9 分33同理在CAD 和CBD 中,得CD =sin AADsin 3, CDsinB=DB ,sin 3所以 CAsin B=CD +sin ACDsinB,即 CA-CD=sin BCDsinA, ···

46、3;···································10 分故CA-CD=CD,即1=CD+CD,···········

47、;··········································11分CACBCBCA故 1 +1 =1 ····&#

48、183;·················································&#

49、183;·····················12 分CACBCD19. 本小题总分值12分【命题意图】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等根底知识;考查推理论证能力、运算求解能力与空间想象能力;考查数形结合思想;考查直观想象、逻辑推理、数学运算等核心素养,表达根底性、综合性总分值12 分【解答】1依题意,四边形 ACC1A1为等腰梯形,过 A1,C1分别

50、引 AC的垂线,垂足分别为 D,E,那么AD =1 (AC -A C )=1 ´(2 - 1)=1 =1 AA ,故ÐA AC = 60°21 122211在ACA 中, A C2 =A A2 +AC2 - 2A A ×AC cos ÐA AC = 12 + 22 - 2 ´1´ 2 ´1 = 3 ,111112所以AC2+AA2 =AC2,故ÐAAC=90°,即ACAA··········

51、83;·················2 分11111因为A1CAB,ABAA1=A,且AB,AA1Ì平面ABB1A1,所以A1C平面ABB1A1,······················

52、83;···············································4 分因为A1CÌ平

53、面ACC1A1 ,所以平面ACC1A1 平面ABB1A1·············································&#

54、183;·············5 分A1C = C2因为ABAC,A1CAB,AC,且AC,A1CÌ平面ACC1A1,所以AB平面ACC1A1,结合1可知AB,AC,A1D三条直线两两垂直·····6 分以A为原点,分别以AB,AC,DA1的方向为x,y,z轴的正方向,建立空间直角坐标系A -xyz ,如下图,那么各点坐标为 3A(0,0,0),B(1,0,0),C(0,2,0),æ1

55、6;,A1 ç0,÷è22 ø3æ3ö ·········································

56、3;··········7 分C1ç0,÷è22 ø 3ö由1知,n=2AC=2æ03-=(0,3,-1)为平面ABBA的法向量11ç,÷1133è22ø····················

57、83;·················································

58、83;·······································8 分æ13öBC=(-1,2,0),C1C=çç0,-÷,è22

59、ø设 n2=(x,y,z)为平面 BCC1B1的法向量,那么ìïnBC,ìn2 ×BC =-x + 2 y = 0 ,故2ïíí1取 n2=(23,3,1), ····················10 分ïîn2C1C,ïn2 ×C1C=y- 3î22z = 0 ,

60、所以cosn1,n2=n1 ×n2=3 -1 =1, ············································

61、3;········11分2´44n1 n2设二面角 A -BB1 -C 的大小为q,那么sinq=20. 本小题总分值12 分= ··················12 分1 - ç - 4 ÷æ 1 ö2èø154【命题意图】本小题主要考查直线与椭圆的位置关系等根

62、底知识;考查推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,表达根底性、综合性与创新性总分值12 分2【解答】解法一:1依题意,a=·································

63、;················1 分a2 + b23由椭圆的对称性可知,四边形A1B2A2B1为菱形,其周长为4=4 ···· 3 分所以b =1,····················

64、3;·················································

65、3;·················4 分x22所以E的方程为+y2=1 ·····························

66、83;··································· 5分2设P(x,y ),那么2y2 =2-x2,··········&#

67、183;············································6 分00直线 A1P 的方程为 y =00x0 + 2y0(x

68、+2),故Cç0,2y0ö÷, ························7 分æèx0 + 2øy0æ2 y0 öx0 - 2由A1DPA2知A1D的方程为y=(x+2),故Dç0,÷,·····

69、83;····8 分èx0 - 2ø假设存在Q(t,0),使得QC×QD=3,那么QC ×QDæt , 2 y0öæt , 2 y0 ö=ç-èx0 +÷×ç-øèx0 -÷22ø2 y2=t2+ 00x2 -22 -x2=t2+ 00x2 -2············

70、··················································

71、··············9 分= t2 -1= 3 ·································

72、3;·················································

73、3;10 分解得t = ±2 ··············································

74、3;······································11 分所以当Q的坐标为(±2,0)时,QC×QD=3·····

75、83;······································12 分解法二1同解法一·········

76、83;·················································

77、83;············5 分2当点P与点B1重合时,C点即B1(0,1),而点D即B2(0,-1),假设存在Q(t,0),使得QC×QD=3,那么(-t,1)×(-t,-1)=3,即t2-1=3,解得t=±2···················6 分

78、以下证明当Q为(±2,0)时, QC×QD=3设P(x,y ),那么2y2 =2-x2,·········································

79、······················7 分0000x0 + 2直线 AP的方程为 y=1y0(x+2 ),故C 0 ,2y0ö,···················

80、83;·····8 分æ2èøçx0 +÷由 AD PA知 AD的方程为 y=y0(x+2 ),故 D 0 ,2y0öæ2ø, ··········9 分12所以QC×QD1æt , 2 y0x0 - 222èøöæt , 2 y0 öçx0 -÷=ç-èx0

81、 +2 y2÷×ç-øèx0 -÷=t2+ 00x2 -22 -x2·······································&#

82、183;································10 分=4+ 0 ···············

83、3;·················································

84、3;·······11分0x2 - 2= 4 -1=3·······································

85、3;·········································12 分说明: Q只求出(2,0)或(-2,0),不扣分21. 本小题总分值12分【命题意图】本小题主要

86、考查古典概型、概率分布列、等差数列、导数等根底知识;考查数据处理能力、推理论证能力、运算求解能力与创新意识;考查函数与方程思想、化归与转化思想、分类与整合思想、必然与或然思想;考查数学建模、逻辑推理、数学运算等核心素养,表达综合性、应用性与创新性总分值12 分【解答】1设恰好有 3 个股东同时选择同一款理财产品的事件为 A,由题意知,5个股东共有45 种选择,而恰好有 3 个股东同时选择同一款理财产品的可能情况为C3×(A2+A3)种,544C3×(A2+A3)45所以P(A)=54454 =128 ······&

87、#183;·················································&

88、#183;···4 分22021 年全年该公司从协定存款中所得的利息为:éë(550+500+450+50)+ 50ù´0.0 168+ 100 +û12=é550+50´11+50ù´0.0014=4.69万元······················&#

89、183;·····················6 分êë2úû由条件,高新工程投资可得收益频率分布表投资收益 t3-x+ 0.02x2 + 0.135x 30 0000-0.27xP0.60.20.2············&

90、#183;·················································&

91、#183;·········································7 分所以,高新工程投资所得收益的期望为:æx32ö32+ 0.027x

92、32;30000ø所以,存款利息和投资高新工程所得的总收益的期望为:L (x)=-0.000 02x3 +0.012x2 + 0.027x + 0.036 ´(500 -x)+ 0.018 ´6 x + 4.6912=-0.00002x3+0.012x2+22.690x500 ························&#

93、183;··············9 分L¢(x)=-0.00006(x2-400x)令 L¢(x)= 0 ,得 x = 400 ,或 x = 0 由L¢(x)0,得0x400;由L¢(x)0,得400x500·················11

94、分由条件可知,当x=400时,L(x)取得最大值为:L(400)=662.69万元所以当x=400时,该公司2021年存款利息和投资高新工程所得的总收益的期望取得最大值662.69万元··································

95、3;··············································12 分22. 本小题总分值12分【解答】解

96、法一:1依题意,f¢(x)=x(x+2)ex,那么································1 分当xÎ(-¥,-2)(0,+¥)时,f¢(x)0;当xÎ(-2,0)时,f¢(x)0;&#

97、183;···········2 分所以f(x)在区间(-¥,-2),(0,+¥)上单调递增,在区间(-2,0)上单调递减····· 3 分因为 f(-2)=4 -10 , f (1)= e -10 ,e2所以f(x)有且只有1个零点···············

98、83;···············································5 分2令 F (x)=x2e

99、x -a (2 ln x +x)-1 ,那么¢( ) = ( +x -=)a(x+2)(x+2)(x2ex-a)Fxxx2ex0 ··························6 分xx假设a 0 ,那么F ¢(x) 0 , F (x)为增函数,eeF æ1ö=-1-aæ2ln1+1

100、ö=-1-aæ1-ln4ö0,不合题意;··············7 分ç2÷4ç22÷4ç2÷èøèøèø假设a0,令 h(x)=x2ex(x0),易知 h(x)单调递增,且值域为(0,+¥),那么存在x0,使得x2ex0=a,即2lnx+x=lna····

101、;··············································8 分0000当 xÎ(0, x0)时, F¢(x) 0, F(x)单调递减; 当 xÎ(x0,+¥)时, F¢(x)0, F(x)单调递增F (x)=F(x)=x2ex0-a(2lnx+x)-1=a-alna-1, ·························

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论