版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北师大版 九年级(下)2 二次函数的图象与性质(二次函数的图象与性质(3)比较函数y=3xy=3x2 2 与y=3(x-1)y=3(x-1)2 2 的图象 想一想想一想w(2)(2)在同一坐标系中作出二次函数在同一坐标系中作出二次函数y=3xy=3x2 2和和y=3(x-1)y=3(x-1)2 2的图象的图象 w完成下表完成下表, ,并比较并比较3x3x2 2和和3(x-1)3(x-1)2 2的值的值, ,它们之间有什么它们之间有什么关系关系? ? x-3-2-101234 23xy213 xy272712123 30 03 3121227274848 272712123 30 03 3121
2、227274848 4848272712123 30 03 312122727做一做做一做观察图象,回答问题(3)(3)函数函数y=3(x-1)y=3(x-1)2 2的的图象与图象与y=3xy=3x2 2的图象有的图象有什么关系什么关系? ?它是轴对称它是轴对称图形吗图形吗? ?它的对称轴和它的对称轴和顶点坐标分别是什么顶点坐标分别是什么? ? (4)x取哪些值时取哪些值时,函数函数y=3(x-1)2的值随的值随x值的值的增大而增大增大而增大?x取哪些值时取哪些值时,函数函数y=3(x-1)2的的值随值随x的增大而减少?的增大而减少? 23xy 213xy23xy 213xy图象是轴对称图形图
3、象是轴对称图形对称轴是平行于对称轴是平行于y轴的直线轴的直线:x=1.顶点坐标顶点坐标是点是点(1,0).二次函数二次函数y=y=3(x-1)3(x-1)2 2与与y=3x2的图象形状的图象形状相同相同,可以看作是抛可以看作是抛物线物线y=3x2整体沿整体沿x轴轴向右平移了向右平移了1 个单位个单位(3)(3)函数函数y=3(x-1)y=3(x-1)2 2的图象的图象与与y=3xy=3x2 2的图象有什么关的图象有什么关系系? ?它是轴对称图形吗它是轴对称图形吗? ?它的对称轴和顶点坐标它的对称轴和顶点坐标分别是什么分别是什么? ? 二次项系数相同二次项系数相同a0,开口都向上开口都向上.w想
4、一想想一想, ,在同一坐标系中作二次函数在同一坐标系中作二次函数y=3(x+1)y=3(x+1)2 2的图象的图象, ,会在什么位置会在什么位置? ? 23xy 213xy在对称轴在对称轴(直线直线:x=1)左侧左侧(即即x1时时),函数函数y=3(x-1)2的值随的值随x的增大而增大的增大而增大,.w想一想想一想, ,在同一坐标系中作出二次函数在同一坐标系中作出二次函数y=3(x+1)y=3(x+1)2 2的图象的图象, ,它的增减性会是什么样它的增减性会是什么样? ? 议一议议一议真知 从实践走来1.1.在上面的坐标系中作出二次函数在上面的坐标系中作出二次函数y=3(x+1)2的图象的图象
5、. .它它与二次函数与二次函数y=3xy=3x2 2和和y=3(x-1)y=3(x-1)2 2的图象有什么关系?它是的图象有什么关系?它是轴对称图形吗轴对称图形吗? ?它的对称轴和顶点坐标分别是什么它的对称轴和顶点坐标分别是什么? ? 2.x取哪些值时取哪些值时,函数函数y=3(x+1)2的值随的值随x值的增值的增大而增大大而增大?x取哪些值时取哪些值时,函数函数y=3(x+1)2的值随的值随x的增大而减少?的增大而减少? 在同一坐标系中作出二次函数在同一坐标系中作出二次函数y=3xy=3x2 2,y=3(x-1),y=3(x-1)2 2和和y=3(x+1)2的图象的图象 做一做做一做w完成下
6、表完成下表, ,并比较并比较3x3x2 2,3(x-1),3(x-1)2 2和和3(x+1)2的值的值, ,它们之间有什么关系它们之间有什么关系? ? 函数函数y=a(x-h)y=a(x-h)2 2(a0)(a0)的图象和性质的图象和性质x-4-3-2-10123423xy213 xy213 xy2712303122727123031227 27123031227 27 12 30312 27 图象是轴对称图形图象是轴对称图形.对称轴是平行于对称轴是平行于y轴的直线轴的直线:x= -1.顶点坐标顶点坐标是点是点(-1,0).二次函数二次函数y=3(x+1)y=3(x+1)2 2与与y=3x2的
7、图象形状的图象形状相同相同,可以看作是抛可以看作是抛物线物线y=3x2整体沿整体沿x轴轴向左平移了向左平移了1 个单位个单位.w1.1.函数函数y=3(x+1)y=3(x+1)2 2的图象的图象与与y=3xy=3x2 2和和y=3(x-1)y=3(x-1)2 2的图的图象有什么关系象有什么关系? ?它是轴对称它是轴对称图形吗图形吗? ?它的对称轴和顶点它的对称轴和顶点坐标分别是什么坐标分别是什么? ? 二次项系数相同二次项系数相同a0,开口都向上开口都向上.w想一想想一想, ,二次函数二次函数y=3(x+1)y=3(x+1)2 2的图象的增减性会怎样的图象的增减性会怎样? ?23xy213 x
8、y213xy23xy 213xy在对称轴在对称轴(直线直线:x=-1)左侧左侧(即即x-1时时),函数函数y=3(x+1)2的值随的值随x的增大而增大的增大而增大,.w猜一猜猜一猜, ,函数函数y=-3(x-1)y=-3(x-1)2 2, ,y=-3(x+1)y=-3(x+1)2 2和和y=-3xy=-3x2 2的图象的位置和形状的图象的位置和形状. .w请你总结二次函数请你总结二次函数y=a(x-h)y=a(x-h)2 2的图象和性质的图象和性质. . 213xy2.抛物线抛物线y=-3(x-1)y=-3(x-1)2 2和和y=-3(x+1)y=-3(x+1)2 2在在x轴轴的下方的下方(除
9、顶点外除顶点外),它的开口向下它的开口向下,并且并且向下无限伸展向下无限伸展.23xy 213 xy213 xyy3.抛物线抛物线y=-3(x-1)y=-3(x-1)2 2在对称在对称轴轴(x=1)的左侧的左侧,当当x1时时, y随着随着x的增大而减小的增大而减小.当当x=1时时,函数函数y的值最大的值最大(是是0);抛物线抛物线y=-3(x+1)y=-3(x+1)2 2在对称轴在对称轴(x=-1)的左侧的左侧,当当x-1时时, y随着随着x的增大而减小的增大而减小.当当x=-1时时,函函数数y的值最大的值最大(是是0).二次函数函数y=-3(x-1)y=-3(x-1)2 2, ,y=-3(x
10、+1)y=-3(x+1)2 2和和y=-3xy=-3x2 2的图象的图象4.抛物线抛物线y=-3(x-1)y=-3(x-1)2 2可以看作是可以看作是抛物线抛物线y=-3xy=-3x2 2沿沿x轴向右平移了轴向右平移了1个单位个单位;抛物线抛物线y=-3(x+1)y=-3(x+1)2 2可以看可以看作是抛物线作是抛物线y=-3xy=-3x2 2沿沿x轴向左平移轴向左平移了了1个单位个单位.X=-1X=11.抛物线抛物线y=-3(x-1)y=-3(x-1)2 2的顶点是的顶点是(1,0);对称对称轴是直线轴是直线:x=1;抛物抛物线线y=-3(x+1)y=-3(x+1)2 2的顶的顶点是点是(-
11、1,0);对称轴是对称轴是直线直线:x=-1.1.抛物线抛物线y=a(x-y=a(x-h)h)2 2的顶点是的顶点是(h,0),对称轴是平行于对称轴是平行于y轴的直线轴的直线x=h.3.当当a0时时,在对称轴在对称轴(x=h)的左侧的左侧,y随着随着x的的增大而减小增大而减小;在对称轴在对称轴(x=h)右侧右侧,y随着随着x的增的增大而增大大而增大;当当x=h时函数时函数y的值最小的值最小(是是0).当当a0时时,抛物线抛物线y=a(x-h)2在在x轴的上轴的上方方(除顶点外除顶点外),它的开口向上它的开口向上,并且向上无限并且向上无限伸展伸展;当当a0时时,向右移向右移 个单个单位位;当当h0)y=a(x-h)2 (a0h0时时, ,向右平向右平移移; ;当当h0h0k0时向上平移时向上平移; ;当当k0k0)y=a(x+h)2+k(a0时时, 开口向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 05J909《工程做法》(标准图集)
- 阳江2024年广东阳江市消防救援支队第十三批政府专职消防员(江城)招录笔试历年典型考点(频考版试卷)附带答案详解版
- 酱油品牌营销案例分析考核试卷
- 水资源优化配置策略-第1篇-洞察分析
- 微生物资源利用-洞察分析
- 物体残留与口腔癌风险-洞察分析
- 异步寄存器研究进展-洞察分析
- 音乐制作产业链分析-洞察分析
- 财务部门职能职责
- 移动宽带设备批发动态-洞察分析
- 初三语文总复习全程计划表
- 电子技术基础与技能-机工教案第九章教案555集成定时器介绍
- 污水处理运行质量保证措施
- 食材供货及质量保障措施方案
- 基于单片机的智能充电器设计
- 营养学概论演示
- 统编版语文四年级上册期末总复习课件
- 2023年四川省乡村医生招聘笔试题库及答案解析
- 弹力重力和摩擦力
- 配料罐(搅拌罐)说明书
- 【超星尔雅学习通】《中国近现代史纲要(首都师范大学)》章节测试题及答案(一)
评论
0/150
提交评论