


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上直线和圆的位置关系1.知识结构 2.重点、难点分析重点:直线和圆的位置关系的性质和判定因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“直线和圆的位置关系”的基础 难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解3.教法建议本节内容需要一个课时(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,
2、指导学生归纳、概括;(2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学教学目标:1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;2、通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析和概括的能力;3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点教学重点:直线和圆的位置关系的判定方法和性质教学难点:直线和圆的三种位置关系的研究及运用教学设计:(一)基本概念1、观察:(组织学生,使学生从感性认识到理性认识)2、归纳:(引导学生完成)(1)直线与圆有两个公共点;(2
3、)直线和圆有唯一公共点(3)直线和圆没有公共点3、概念:(指导学生完成)由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交这时直线叫做圆的割线(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切这时直线叫做圆的切线,唯一的公共点叫做切点(3)相离:直线和圆没有公共点时,叫做直线和圆相离研究与理解:直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?(二)直线与圆的位置关系的数量特征1、迁移:点与圆的位置关系(1)点P在O
4、内 d<r;(2)点P在O上 d=r;(3)点P在O外 d>r2、归纳概括:如果O的半径为r ,圆心O到直线l的距离为d,那么(1)直线l和O相交 d<r;(2)直线l和O相切 d=r;(3)直线l和O相离 d>r(三)应用:在RtABC中,C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm学生自主完成,老师指导学生规范解题过程解:(图形略)过C点作CDAB于D,在RtABC中,C=90°,AB= , ,AB·CD=AC·BC, (cm),(1)当r =2cm时 CDr,圆C与AB相离;(2)当r=2.4cm时,CD=r,圆C与AB相切;(3)当r=3cm时,CDr,圆C与AB相交练习P105,1、2(四)小结:1、知识:(指导学生归纳)2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力(五)作业:教材P115,1(1)、2、3探究活动如图,正ABC的边长为6 厘米,O的半径为r厘米,当圆心O从点A出发沿着线路AB一BC一CA运动回到点A时,O随着点O的运动而移动在O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数略解:由正三角形的边长为6 厘米,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025新鲜鸡蛋购销合同
- 2025国际企业建筑工程合同模板
- 2025年北京个体房屋租赁标准合同示例
- 2025年外籍员工劳动合同范本
- 2025城市绿化项目合同协议书模板
- 辅导学生社交能力的有效措施计划
- 职业生涯规划中的自我认知计划
- 提高仓库管理水平优化物流流程计划
- 《2025企业管理指南离职员工合同样本保存策略与规定文档模板》
- 秘书工作的成就感与挑战计划
- 2023年国家药监局药品审评中心招聘笔试真题
- 中国香氛香薰行业市场需求规模与投资效益预测报告2024-2030年
- DLT 1051-2019电力技术监督导则
- 2024年工程承包合同书范文
- 第五单元大单元教学整体设计-2023-2024学年统编版语文四年级下册
- 《生物安全培训》课件-2024鲜版
- 启程三部合唱谱春天合唱团
- 大件垃圾处理工艺
- 2024年4月自考04851产品设计程序与方法试题
- 机械伤害应急措施(课件)
- 机械制造与自动化专业人才培养方案-高职专科
评论
0/150
提交评论