下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数值域求法的应用宣汉县第二中学 杜林对于函数的三要素之定义域和值域这两大要素,我们要有解决它们的办法。在上一篇文章中,我们已经学习了函数定义域的求法;下面我们来学习求函数值域的几种常见方法 1直接法:先掌握常见函数的值域情况,然后通过常见函数的复合来求解值域。一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数的定义域为R,当a>0时,值域为;当a<0时,值域为.例1求下列函数的值域 y=3x+2(-1x1) 解:-1x1,-33x3,-13x+25,即-1y5,值域是-1,5 即函数的值域是 y| y2 即函数的值域是 y|
2、 yÎR且y¹1(此法亦称分离常数法)当x>0,=,当x<0时,=值域是2,+).(此法也称为配方法)函数的图像为:2二次函数各区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:; ; ;解:,顶点为(2,-3),顶点横坐标为2. 抛物线的开口向上,函数的定义域R,x=2时,ymin=-3 ,无最大值;函数的值域是y|y-3 .顶点横坐标23,4,当x=3时,y= -2;x=4时,y=1; 在3,4上,=-2,=1;值域为-2,1.顶点横坐标20,1,当x=0时,y=1;x=1时,y=-2,在0,1上,=-2,=1;值域为-2,1.顶点横坐标2 0,
3、5,当x=0时,y=1;x=2时,y=-3, x=5时,y=6,在0,1上,=-3,=6;值域为-3,6.注:对于二次函数,若定义域为R时,当a>0时,则当时,其最小值;当a<0时,则当时,其最大值.若定义域为x a,b,则应首先判定其顶点横坐标x0是否属于区间a,b.若a,b,则是函数的最小值(a>0)时或最大值(a<0)时,再比较的大小决定函数的最大(小)值.若a,b,则a,b是在的单调区间内,只需比较的大小即可决定函数的最大(小)值.注:若给定区间不是闭区间,则可能得不到最大(小)值;当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.3判
4、别式法(法):判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论例3求函数的值域方法一:去分母得 (y-1)+(y+5)x-6y-6=0 当 y¹1时 xÎR =(y+5)+4(y-1)×6(y+1)0由此得 (5y+1)0检验 时 (代入求根)2 Ï 定义域 x| x¹2且 x¹3 再检验 y=1 代入求得 x=2 y¹1综上所述,函数的值域为 y| y¹1且 y¹方法二:把已知函数化为函数 (x¹2) 由此可得 y¹1 x=2时 即 函数的值域
5、为 y| y¹1且 y¹说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.4换元法例4求函数的值域解:设 则 t0 x=1-代入得 t0 y45分段函数例5求函数y=|x+1|+|x-2|的值域. 解法1:将函数化为分段函数形式:,画出它的图象(下图),由图象可知,函数的值域是y|y3.解法2:函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,易见y的最小值是3,函数的值域是3,+. 如图 两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专项服务外包合同
- 2024年创新技术股权期权激励合同
- 电商产品检验报告合同
- 2024年定制版:销售人员岗位聘用合同
- 物业环境消毒杀菌服务合同
- 2024年借款合同公司对公
- 2024年实习生科研实验项目合同
- 2024年场地保证金合同范本
- 2024年宣传册制作及广告位安装合同
- 2024年会布置项目合同
- 上海中考英语专项练习-动词的时态-练习卷一和参考答案
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
- 我们的出行方式 (教学设计)2022-2023学年综合实践活动四年级上册 全国通用
- GB/T 16739.2-2023汽车维修业经营业务条件第2部分:汽车综合小修及专项维修业户
- 七年级数学上册《第二章 整式的加减》单元测试卷含答案人教版
- 第三章农业遥感技术与应用课件
- 产品安全技术说明书MSDS
- 合理用药健康教育教学课件
- 中医教材(第五版)
- 比亚迪F0说明书
- 昌江县古榕峰水泥用石灰岩矿矿产资源开发利用与保护方案
评论
0/150
提交评论