直线的参数方程教案_第1页
直线的参数方程教案_第2页
直线的参数方程教案_第3页
直线的参数方程教案_第4页
直线的参数方程教案_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、直线的参数方程教学目标:1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想 3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度教学重点:联系数轴、向量等知识,写出直线的参数方程 教学难点:通过向量法,建立参数数轴上的点坐标与点在直角坐标系中的坐标之间的联系 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件教学过程:一、回忆旧知,做好铺垫教师提出问题:1.曲线参数

2、方程的概念及圆与椭圆的参数方程2.直线的方向向量的概念3.在平面直角坐标系中,确定一条直线的几何条件是什么?4.一条直线的倾斜角和所过的一个定点,请写出直线的方程5.如何建立直线的参数方程?这些问题先由学生思考,答复,教师补充完善,问题5不急于让学生答复,先引起学生的思考【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备二、直线参数方程探究1回忆数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并答复下列问题教师引导学生明确:如果数轴原点为O,数1所对应的点为A,数轴上点M的坐标为,那么:为数轴的单位方向向量,方向与数轴的正方向一致,且;当与方

3、向一致时即的方向与数轴正方向一致时,;当与方向相反时即的方向与数轴正方向相反时,;当M与O重合时,;教师用几何画板软件演示上述过程【设计意图】回忆数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备2.类比分析,异曲同工问题:1类比数轴概念,平面直角坐标系中的任意一条直线能否认义成数轴?2把直线当成数轴后,直线上任意一点就有两种坐标怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?教师提出问题后,引导学生思考并得出以下结论:选取直线上的定点为原点,与直线平行且方向向上(的倾斜角不为0时)或向右的倾斜角为0时的单位向量确定直线的正方向,同时在直线上确定进行度量的单位长度,这

4、时直线就变成了数轴于是,直线上的点就有了两种坐标一维坐标和二维坐标在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备3. 选好参数,柳暗花明问题1:当点M在直线上运动时,点M满足怎样的几何条件?让学生充分思考后,教师引导学生得出结论:将直线当成数轴后,直线上点M运动就等价于向量变化,但无论向量怎样变化,都有因此点M在数轴上的坐标决定了点M的位置,从而可以选择作为参数来获取直线的参数方程【设计意图】明确参数问题2:如何确定直线的

5、单位方向向量?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆因此在单位圆中来确定直线的单位方向向量教师引导学生确定单位方向向量,在此根底上启发学生得出,从而明确直线的方向向量可以由倾斜角来确定当时,所以直线的单位方向向量的方向总是向上【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想4. 等价转化,深入探究问题:如果点,M的坐标分别为,怎样用参数表示?教师启发学生回忆向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流过程如下:因为,所以存在实数,使得,即

6、于是,即,因此,经过定点,倾斜角为的直线的参数方程为 为参数 教师提出如下问题让学生加强认识:直线的参数方程中哪些是变量?哪些是常量?参数的取值范围是什么?参数的几何意义是什么?总结如下:,是常量,是变量; ;由于,且,得到,因此表示直线上的动点M到定点的距离当的方向与数轴直线正方向相同时,;当的方向与数轴直线正方向相反时,;当时,点M与点重合【设计意图】把向量转化为坐标,获得了直线的参数方程,在此根底上分析直线参数方程的特点,体会参数的几何意义三、运用知识,培养能力例1.直线与抛物线交于A,B两点,求线段AB的长度和点到A,B两点的距离之积先由学生思考并动手解决,教师适时点拨、引导,鼓励一题

7、多解,学生可能有以下解法:解法一:由,得设,,由韦达定理得:由*解得,所以那么解法二、因为直线过定点M,且的倾斜角为,所以它的参数方程是 为参数, 即 为参数把它代入抛物线的方程,得,解得,由参数的几何意义得:,在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善然后进行比拟:在解决直线上线段长度问题时多了一种解决方法【设计意图】通过此题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力探究:直线 为参数与曲线交于两点,对应的参数分别为1曲线的弦的长是多少?2线段的中点M对应的参数的值是多少?先由学生思考,讨论,最

8、后师生共同得到:, 【设计意图】通过特殊到一般,及时让学生总结有关结论,为进一步应用打下根底,培养归纳、概括能力例2、经过点作直线,交椭圆于A,B两点如果点M恰好为线段AB的中点,求直线的方程分析:引导学生以M作为直线上的定点写出直线的参数方程,然后与椭圆的方程联立,设A,B两点对应的参数分别为,那么由求出直线的斜率教师板书,过程如下:解:设过点的直线的参数方程为为参数,代入椭圆方程,整理得 因为点M在椭圆内,这个方程必有两个实根,设A,B两点对应的参数分别为,那么因为点M为线段AB的中点,所以,即于是直线的斜率因此,直线的方程是,即教师引导学生课下用其他方法解决思考:例2的解法对一般圆锥曲线

9、适用吗?把“中点改为“三等分点,直线的方程怎样求?由学生课下解决【设计意图】体会直线参数方程在解决弦中点问题时的作用 四、自主解决,深入理解过点,斜率为的直线和抛物线相交于A,B两点,设线段AB的中点为M,求点M的坐标此题由学生独立完成,教师补充完善解:设过点的直线AB的倾斜角为,由可得:,所以,直线的参数方程为为参数代入,整理得中点M的相应参数是,所以点M的坐标是【设计意图】注重知识的落实,通过问题的解决,使学生进一步理解所学知识五、归纳总结,提升认识 先让学生从知识、思想方法以及对本节课的感受等方面进行总结教师在学生总结的根底上再进行概括1知识小结本节课联系数轴、向量等知识,推导出了直线的

10、参数方程,并进行了简单应用,体会了直线参数方程在解决有关问题时的作用2思想方法小结在研究直线参数方程过程中渗透了运动与变化、类比、数形结合、转化等数学思想【设计意图】对学习内容有一个整体的认识,培养归纳、概括能力六、布置作业,稳固提高1. 教材P391,3 ;2. 思考题:假设直线的参数方程为 为常数,为参数,请思考参数的意义【设计意图】使学生进一步稳固所学知识,加深对知识的理解,为学有余力的学生提供思考的空间七、板书设计直线的参数方程1.直线的参数方程 3.例题分析2.弦长公式教案设计说明本节课研究了直线的参数方程,并进行了简单的应用本节课注重知识的产生过程,培养学生综合运用所学知识分析问题和解决问题的能力在教学过程中渗透运动与变化、数形结合、类比、转化等数学思想,关注学生的参与和知识的落实本节课选择直线的参数方程的参数是比拟困难的,这是因为从确定直线的几何条件较难联想到“距离因此在教学中除了复习预备知识以外,还复习了数轴联系数轴上点的坐标的几何意义,类比得到平面直角坐标系中的任意一条直线都可以当成数轴,这样直线上任意一点就可以用坐标表示,因此可以选择坐标为直线参数方程中的参数从而,建立直线的参数方程就转化为建立坐标与坐标及倾斜角之间关系的问题这样设计既注重了知识的产生过程,又使学生深刻理解了参数的几何意义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论