某塑料制品厂全厂总配变电所及配电系统设计_第1页
某塑料制品厂全厂总配变电所及配电系统设计_第2页
某塑料制品厂全厂总配变电所及配电系统设计_第3页
某塑料制品厂全厂总配变电所及配电系统设计_第4页
某塑料制品厂全厂总配变电所及配电系统设计_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、摘 要某塑料制品厂全厂总配变电所及配电系统设计是对工厂供电的设计。本设计对工厂供电方式、主要设备的选择、保护装置的配置及防雷接地系统进行了相应的叙述,其中还包括全厂的负荷计算、高压侧和低压侧的短路计算、设备选择及校验、主要设备继电保护设计、配电装置设计、防雷和接地设计等。本设计通过计算出的有功、无功和视在功率选择变压器的大小和相应主要设备的主要参数,再根据用户对电压的要求,计算补偿功率,从而得出所需补偿电容的大小与个数。根据国家供电部门的相关规定,画出总配变电所及配电系统的主接线图。电气主接线对电气设备的选择,配电所的布置,运行的安全性、可靠性和灵活性,对电力工程建设和运行的经济节约等,都有很

2、大的影响。,关键词:变电所,负荷计算,设备选型,继电保护ABSTRACTThe whole plant distribution substation and power distribution system design of a plastic products factory is for power plant design. The design makes the narrative about the factory power supply, main equipment selection, protection device configuration and groun

3、ding system for lightning protection, which also includes the load calculation of the factory, the short circuit current calculation of the high pressure side and low pressure side, equipment selection and validation, the main equipment relay protection design, power distribution equipment design, l

4、ightning protection and grounding design. This design is based on the calculation of the active power, reactive power and apparent power transformer and the size of the corresponding main equipment main parameter, then works out the compensation computing power according to user requirements to volt

5、age .Thus it can obtain the desirable size and number of compensation capacitor.According to the relevant provisions of the national electricity sector, the design draws the main connection diagram about the total distribution substation and power distribution system. Main electrical connection have

6、 great influence on the electrical equipment selection, the layout of the distribution, operation safety, reliability and flexibility, also power engineering construction and economy of the operation and so on.Keywords: substations, load calculation, equipment selection, relay protection目 录第1章 绪论- 1

7、 -1.1 工厂供电的意义- 1 -1.2 工厂供电的要求- 1 -1.3 工厂平面图- 1 -第2章 主接线的设计- 3 -2.1 总配电所的主接线设计的原则和意义- 3 -2.2 变配电所主接线方案的技术经济指标- 3 -2.3 主接线图- 4 -第3章 负荷计算- 6 -3.1 负荷计算的意义- 6 -3.2 负荷计算的方法- 6 -3.3 负荷计算示意图- 7 -3.4 具体数据和负荷计算举例- 7 -3.4.1 原始数据- 7 -3.4.2 负荷计算- 8 -第4章 功率补偿计算及变压器的选择- 12 -4.1 功率补偿计算- 12 -4.2 变压器容量的选择- 14 -第5章 短路

8、电流计算- 16 -5.1 短路电流计算方法及意义- 16 -5.2 短路计算- 16 -5.2.1 短路电流计算等效示意图- 16 -5.2.2 短路电流及容量的计算- 16 -第6章 进线、母线及电器设备的选择- 19 -6.1 总配电所架空线进线的选择- 19 -6.2 高压侧与低压侧母线的选择- 19 -6.3 各变电所进线选择- 19 -6.4 变电所低压出线的选择- 20 -6.5 设备的选择- 21 -6.5.1 高压侧设备的选择- 21 -6.5.2 各车间进线设备的选择- 21 -6.5.3各变电所低压侧出线回路设备选择与校验表- 22 -第7章 过电流保护- 25 -7.1

9、 高压进线的继电保护- 25 -7.2 各变电所进线的保护- 26 -7.3 变压器继电保护- 28 -第8章 防雷与接地保护- 31 -8.1 防雷保护- 31 -8.2 接地装置- 31 -结论- 33 -参考文献- 34 -致 谢- 35 -附 录- 36 -第1章 绪论1.1 工厂供电的意义工厂供电(electric power supply for industrial plants),就是指工厂所需电能的供应和分配。在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小。例如在机械工业中,电费的开支仅占产品成本的5%左右。因此电能在工业生产中的重要性,并

10、不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气自动化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程的自动化。从另一方面说,如果工厂的电能供应突然中断,对工业生产可能造成严重的后果。例如某些供电可靠性要求很高的工厂,即使是极短暂的停电,也会引起重大的设备损坏,或引起大量的产品报废,甚至可能发生重大的人身事故,给国家和人民带来经济上甚至政治上的重大损失。所以,工厂应该根据本厂环境条件和供电要求来选择适当的电气设备和确定其各项参数,保证工厂正常运行时安全可靠,出现故障时不致出现严重的后果,并在合理的

11、情况下注意节约,还应该根据工厂生产情况与供应能力统筹兼顾。因此,一套完整的现代化供电系统对于一个工厂实现生产自动化、提高成品质量是不可缺少的。 1.2 工厂供电的要求在工厂供电的过程中要切实保证工厂生产和生活的需要,还要做好节能工作,就应该做到以下要求:1 可靠 要满足供电可靠性的要求。2 安全 要满足在电能的使用中不应发生设备和人身事故。3 优质 要保证用户对电能质量的要求。4 经济 尽量减少供电系统中不必要的投资,并尽可能地节约电能。此外,在设计工厂配电系统的时候还要考虑到当地的天气设计防雷接地装置,合理地处理当前和长远的关系,既要节约能源,又要保证工厂生产和生活的需要。1.3 工厂平面图

12、图1.1 塑料厂平面布置图第2章 主接线的设计根据本厂与供电部签定的供用电协议,供电电压为从电业部门某6010千伏变电所用10千伏架空线路向本厂供电,该所在厂南侧l公里,工作电源仅采用10千伏电压一种。总配电所内的10KV母线采用母线不分段,电源进线均用断路器控制。2.1 总配电所的主接线设计的原则和意义一次接线图也叫做主接线图,是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等。电气一次设备是指直接用于生产、输送和分配电能的生产过程的高压电气设备。

13、它包括发电机、变压器、断路器、隔离开关、自动开关、接触器、刀开关、母线、输电线路、电力电缆、电抗器、电动机等。对工厂变电所主接线应满足以下几点要求:1) 安全:应符合有关国家标准和技术规范的要求,能充分保证人身和设备的安全。2) 可靠:应满足电力负荷对供电可靠性的要求。3) 灵活:应能适应必要的各种运行方式,便于操作和检修,且适应负荷的发展。4) 经济:在满足上述要求的前提下,尽量使主接线简单,投资少,运行费用低,并节约电能和有色金属消耗量。2.2 变配电所主接线方案的技术经济指标设计变配电所主接线,应根据所选主变压器的容量以及负荷对供电可靠性的要求,初步确定23个比较合适的主接线方案来进行技

14、术经济比较,择其忧者作为选定的变配电所主接线方案。主接线的基本方式有以下四种:1. 单母线接线母线是连接电源和引出线的中间环节,起汇集和分配电能的作用,只有一组母线的接线称为单母线.单母线接线简单明了,操作方便,便于扩建,投资少。2. 双母线连线在单母线连线的基础上,设备备用母线,就成为双母线。它在供电可靠性和运行灵活性方面是最好的一种主接线。可投资大,开关电器多,配电装置复杂,占地面积大,不适合一般配电所。3. 桥式接线当配电所只有两回路电源进线和两台主变压器时,采用桥式接线用的断路器台数最少,投资低。4. 线路一变压器组单元接线当单回路单台变压器供电时,宜采用此进线,所有的电气设备少,配电

15、装置简单,节约建设投资。2.3 主接线图 方案1,只装一台变压器的主接线图。图2.1 装一台变压器的主接线图方案2,装有两台变压器的主接线图。 图2.2 装两台变压器的主接线图经过对比方案1比方案2更经济就、简单,并且满足本设计的需要,所以本设计选择方案1。第3章 负荷计算3.1 负荷计算的意义计算负荷是供电系统设计计算的基础,为选择变压器台数和容量,选择电气设备,确定测量仪表的量程,选择继电保护装置等提供重要的数据依据。所以负荷计算准确与否直接影响着供电设计的质量。工厂供电系统运行时的实际负荷并不等于所有用电设备额定功率之和。这是因为用电设备不可能全部同时运行,每台设备也不可能全部满负荷,各

16、种用电设备的功率因数也不可能完全相同。因此,工厂供电系统在设计过程中,必须找出这些用电设备的等效负荷。所谓等效是指这些用电设备在实际运行中所产生的最大热效应与等效负荷产生的热效应相等,产生的最大温升与等效负荷产生的最高温升相等。我们按照等效负荷,从满足用电设备发热的条件来选择用电设备,用以计算的负荷功率或负荷电流称为“计算负荷”。通常规定取30分钟(min)平均最大负荷、和作为该用户的“计算负荷”,并用、和分别表示其有功、无功、视在和电流计算负荷。计算负荷也称需要负荷或最大负荷,目的是为了合理地选择工厂各级电压供电网络、变压器容量和设备型号等。3.2 负荷计算的方法计算负荷的确定是工厂供电设计

17、中很重要的一环,汁算负荷的确定是否合理,直接影响到电气设备选择的合理性、经济性。如果汁算负荷确定的过大,将使电气设备选得过大,造成投资利有色金属的浪费;而计算负荷确定的过小,则电气设备运行时电能损耗增加,并产生过热,使其绝缘过于老化,甚至烧毁、造成经济损失。因此,在供电设计中,应根据不同的情况,选择正确的计算入法来确定汁算负荷。常用的负荷计算方法有需要系数法、二项式法、利用系数法和面积功率法等。在实际工程配电设计中,广泛采用系数法,因其计算方便,多采用方案估算,初步设计和全厂大型车间变电所的施工设计。按需要系数法确定计算,应从实际每台用电设备开始,逐级向电源推进,一直计算到电源,用每一级的计算

18、负荷为选择该用电器的依据。需用系数法的计算,现在己普遍应用于供配电设计中,其缺点是它未考虑到用电设备中少数容量特大的设备对计算负荷的影响。本设计的情况符合需要系数法,因此本设计中的负荷计算都用需要系数法进行计算。3.3 负荷计算示意图本设计所采用的电力负荷计算示意图如图3.1所示,将每个计算点编号,由用电设备依次逆推到电源侧。 图3.1 电力负荷计算示意图3.4 具体数据和负荷计算举例3.4.1 原始数据个车间的数据如表3.1所示表3.1 所有变电所负荷计算表序号车间或用电单位名称设备容量(千瓦)需用系数Kd功率因数 功率因数正切(1)NO1变电所1薄膜车间14000.60.61.332原料库

19、300.250.51.733生活间100.814成品库(一)250.30.51.735成品库(二)240.30.51.736包装材料库200.30.51.73(2)NO2变电所1单丝车间13850.60.61.332水泵房及其附属设备200.650.80.75(3)NO3变电所1油塑车间1890.40.61.332管材车间8800.350.61.33(4)NO4变电所1备料复制车间1380.60.51.732生活间100.813浴室30.814钳工车间300.30.651.175原料、生活间150.816仓库150.30.51.737机修模具车间1000.250.651.178处理车间1500

20、.60.71.029车间1800.30.51.73(5)NO5变电所1锅炉房2000.70.750.882试验室1250.250.51.733辅助材料库1100.20.51.734油泵房150.650.80.755加油站100.650.80.756办公楼、招待所、食堂150.60.61.333.4.2 负荷计算 现以NO.5变电所车间负荷计算为例,计算过程如下:(在计算各车间变电所负荷合计时,同时系数分别取值:=0.9;=0.95)NO.5变电所(1) 锅炉房有功功率:=200×0.7=140 KW无功功率:= =140×0.88=123.2 Kvar视在功率:=140&#

21、247;0.75=186.67 KV·A(2) 试验室有功功率:=125×0.25=31.25 KW无功功率:= =31.25×1.73=54.06 Kvar视在功率:=31.25÷0.5=62.5 KV·A(3) 辅助材料库有功功率:=110×0.2=22 KW无功功率:= =22×1.73=38.06 Kvar视在功率:=22÷0.5=44 KV·A(4) 油泵房有功功率:=15×0.65=9.75 KW无功功率:= =9.75×0.75=7.31 Kvar视在功率:=9.75&#

22、247;0.8=12.19 KV·A(5) 加油站有功功率:=10×0.65=6.5KW无功功率:= =6.5×0.75=4.88 Kvar视在功率:=6.5÷0.8=8.13 KV·A(6) 办公楼、招待所、食堂有功功率:=15×0.6=9 KW无功功率:= =9×1.33=11.97 Kvar视在功率:=9÷0.6=15 KV·A变电所N0.5的计算负荷:有功计算负荷:= =0.9×(14031.25229.756.59) =196.65 KW无功计算负荷:= =0.95×(123

23、.254.0638.067.314.8811.97) =227.51 Kvar视在计算负荷:= =300.72 KV·A其余变电所的计算方法与NO.1变电所的计算方法相同,这里就不一一计算了,其计算结果如表3.2所示。表3.2 负荷计算结果序号车间(单位)名称计算负荷有功(KW)无功(Kvar)视在(KV·A)(1)NO1变电所1薄膜车间8401117.214002原料库7.512.98153生活间884成品库(一)7.512.98155成品库(一)7.212.4614.46包装材料库610.38127小计876.211661464.4乘以同时系数KP=0.9,KQ=0.9

24、5788.581107.71359.73(2)NO2变电所1单丝车间8311105.2313852水泵房及其附属设备139.7516.253小计8441114.981401.25乘以同时系数KP=0.9,KQ=0.95759.61059.231303.44(3)NO3变电所1油塑车间75.6100.551262管材车间308409.64513.333小计383.6510.15639.33乘以同时系数KP=0.9,KQ=0.95345.24484.68595.07(4)NO4变电所1备料复制车间82.8143.24165.62生活间883浴室2.42.44钳工车间910.5313.855原料、生

25、活间12126仓库4.57.7997机修模具车间2529.2538.468处理车间9091.8128.579车间5493.4210810小计287.7376.03485.88乘以同时系数KP=0.9,KQ=0.95258.57357.23440.99(5)NO5变电所1锅炉房140123.2186.672试验室31.2554.0662.53辅助材料库2238.06444油泵房9.757.3112.195加油站6.54.888.136办公楼、招待所、食堂911.97157小计218.5239.48328.49乘以同时系数KP=0.9,KQ=0.95196.65227.51300.72第4章 功率

26、补偿计算及变压器的选择4.1 功率补偿计算供电单位一般对用电用企业要求要求功率因数达到0.9以上,当总功率因数较低时,常采用提高用电设备的自然功率因数的方法提高总平均功率因数。提高负荷的功率因数,可以减少发电机送出的无功功率和通过线路、变压器传输的无功功率,使线损大为降低,而且还可以改善电压质量、提高线路和变压器的输送能力。本设计采用并联电容器进行无功补偿,它是目前最行之有效且应用最广的无功补偿的措施,它主要用于频率为50Hz的电网中提供功率因数,作为产生无功功率的电源。下面以NO.5变电所为例计算:变电所的补偿前功率因数:=196.65÷300.72=0.65计算电流:=78.46

27、 A补偿后功率因数:=0.92需要补偿的功率:=196.65×(1.17-0.43) =145.52 Kvar补偿电容器的个数:=145.52÷25=5.81所以实际补偿的功率:=150 Kvar(所以本设计中选用电容器的型号为BKMJ0.4-25-3 )补偿后有功计算负荷:=196.65 KW补偿后无功计算负荷:=-=227.51-150=77.51 Kvar补偿后视在计算负荷:=211.37 KV·A补偿后的计算电流:=12.20 A高压侧功率因数的校检:=0.015=0.015×211.37=3.17 KW =0.06=0.06×211.

28、37=12.68 Kvar高压侧有功计算负荷:=+=199.82 KW高压侧无功计算负荷:=+=90.19 KV·A高压侧视在计算负荷:=219.23 KV·A高压侧计算电流:=12.66 A高压侧的功率因数:=0.91>0.9,满足要求。其他各变电所的计算方法相同,计算结果如表4.1所示:表4.1 功率补偿计算结果变电所NO.1NO.2NO.3NO.4NO.5补偿前0.580.580.580.590.65(KW)788.58759.6345.24258.57196.65(Kvar)1107.71059.23484.68357.23227.51(KV·A)1

29、359.731303.44595.07440.99300.72(A)78.4675.2634.3625.4617.36补偿后0.920.920.920.920.92(KW)788.58759.6345.24258.57196.65(Kvar)332.7309.23134.68107.2377.51(KV·A)855.89820.13370.58279.92211.37(A)49.4247.3521.4016.1612.20高压侧0.90.910.910.900.91(KW)801.42771.9350.8262.77199.82(Kvar)383.05358.44156.91124.

30、0390.19(KV·A)888.26851.06384.29290.57219.23 (A)51.2949.1422.1916.7812.664.2 变压器容量的选择(1)只装一台变压器的变电所变压器的容量:应满足用电设备全部的计算负荷的需要,即(2)装有两台变压器的变电所每台变压器的容量应满足以下两个条件。任一台变压器工作时,宜满足总计算负荷 的大约60%70%的需要,即=(0.60.7)任一台变压器工作时,应满足全部一、二级负荷的需要,即本设计中所有负荷均为三级负荷,故变电所选取的变压器仅考虑(1)即可。(3)车间变电所变压器的容量上限单台变压器不宜大于1000KV·

31、A。这一方面是受以往低压开关电器断流能力和短路稳定度要求的限制;另一方面也是考虑到可以使变压器更接近于车间负荷中心,以减少低压配电线路的电能损耗、电压损耗和有色金属消耗量。(4) 并行运行的变压器最大容量与最小容量之比不应超过3:1。同时,并联运行的两台变压器必须符合以下条件:并联变压器的电压比必须相同,允许差值不应超过 ,否则会产生环流引起电能损耗,甚至绕组过热或烧坏。并列变压器的阻抗电压必须相等,允许差值应不超过±10%,否则阻抗电压小的变压器可能过载。并列变压器的联接组别应相同,否则二次侧会产生很大的环流,可能使变压器绕组烧坏。以NO.5变电所变压器的选择为例,其计算负荷是30

32、0.72,所以应该选择变压器的型号为S9-400/10一台就能满足需要,同理,选出其他变电所的变压器型号。结果如表4.2所示:表4.2 各变电所选的变压器及台数变电所变压器的型号额定容量KVA额 定 电 压消耗(KW) 空载电流(%)阻抗电压(%)台数(台)高压低压空载短路NO.1S9-1000/10100010.50.41.7210.01.14.51NO.2S9-1000/10100010.50.41.7210.01.14.51NO.3S9-500/10 50010.50.41.05.01.441NO.4S9-400/1040010.50.40.844.201.441NO.5S9-315/1

33、031510.50.40.703.501.541第5章 短路电流计算5.1 短路电流计算方法及意义短路电流计算的方法,常用的有欧姆法和标幺制法,本设计采用标幺制法。短路电流计算的目的主要是为了正确选择电气设备,以及进行继电保护装置的整定计算。5.2 短路计算5.2.1 短路电流计算等效示意图图5.1 短路等效电路图5.2.2 短路电流及容量的计算取基准容量=100MVA,高压侧基准电压 ,低压侧基高侧基准电流,低压侧基准电流(1) 电力系统的电抗标幺值由=300MVA得:=100÷300=0.33(2) 架空线路的电抗标幺值:由=0.35/km =1km得:=0.32(3) 电力变压

34、器的电抗标幺值,这里以NO.1为例计算,该变电所选的变压器是S9-1000/10,所以=4.5%:=4.5短路等效电路图如图5-1所示,并标明短路计算点。计算K-1点的短路电路总标幺值及三相短路电流和短路容量:1 总电抗标幺值=+=0.33+0.32=0.652 三相短路电流周期分量有效值=5.5÷0.65 KA=8.46 KA3 其他三相短路电流=8.64 KA=2.55=2.55×8.64=22.03 KA=1.51=1.51×8.64=13.06 KA4 三相短路容量=153.85 MV·A计算K-2点的短路电路总电抗标幺值及三相短路电流和短路容量

35、5 总电抗标幺值=0.33+0.32+4.5=5.156 三相短路电流周期分量有效值=28.03 KA7 其他三相短路电流=28.03 KA=1.84=1.84×28.03=51.58 KA=1.09=1.09×28.03=30.55 KA8 三相短路容量=19.42 MV·A其他各变电所的短路计算与NO.1计算相同,其计算结果如表5.1所示:表5.1 各变电所的短路计算电路及容量短路计算点变电所号码三相短路电流/KA三相短路容量/MVA() K-18.648.648.6422.0313.06153.85K-2NO.128.0328.0328.0351.5830.

36、5519.42K-2NO.228.0328.0328.0351.5830.5519.42K-2NO.316.6916.6916.6930.7118.1911.56K-2NO.413.5513.5513.5524.9314.779.39K-2NO.510.8110.8110.8119.8911.787.49第6章 进线、母线及电器设备的选择6.1 总配电所架空线进线的选择架空线一般按发热条件来确定导线的型号,应该注意的是导线的允许载流量小于通过相线的计算电流,即>高压侧补偿后的计算电流:=152.04 A 查询相关附录表:根据当地温度的需要选择适宜的导线,因此这里应该选择LGJ-35型的铝

37、绞线,该导线的截面积是35mm,机械强度也满足要求。6.2 高压侧与低压侧母线的选择母线的选择方法与架空线的选择方法相同,所以计算电流为:=152.04 A 查询相关附录表:根据当地温度的需要选择适宜的导线,因此这里应该选择LMY型矩形硬铝母线,选择导线的截面积为50×4mm,其允许载流量为586A。低压侧与高压侧的母线选择一致,此处省略计算过程。查表得,低压侧母线选用LMY型矩形硬铝母线的截面为125×10mm。6.3 各变电所进线选择NO.1 变电所引进线年最大负荷利用小时在5000h以上的架空线路且材料为铝芯电缆的经济电流密度为1.54A/mm。回路电流:=51.29

38、 A所以=33.31mm查表知:可选择ZLQ20-10000-3×35 mm的三芯油浸纸电缆铝芯铅包钢带凯装防腐电缆,相关参数:在温度为35时,允许的载流量是105A,正常允许的最高温度为60。其他变电所均采用ZLQ20-10000型电缆,其选择结果如表6.1所示:表6.1 各变电所高压进线列表变电所回路电流I(A)截面积(mm) 架空线 电力电缆(每回路)型号S(mm)根数35允许载流量(A)NO.151.2933.31ZLQ20-10000-3×35351130NO.249.1431.91ZLQ20-10000-3×35351130NO.322.1914.41

39、ZLQ20-10000-3×1616165NO.416.7810.90ZLQ20-10000-3×1616165NO.512.668.22ZLQ20-10000-3×16161656.4 变电所低压出线的选择选择原则:根据计算变电所计算电流大小,来选择线型。NO.1 变电所低压侧回路电流:=49.42A所选母线载流量应大于回路电流,查表可知:矩形硬铝母线LMY100×6.3,其放平时的载流量是1371A,能够满足载流要求。其他变电所选择如下表6.2所示:表6.2 各变电所低压进线列表变电所回路电流(A)低压侧回路母线型号尺寸(mm)根数允许载流量(A)N

40、O.11300.43LMY100×6.3100×6.311371NO.21246.10LMY100×6.3100×6.31371NO.3563.05LMY50×450×41586NO.4425.31LMY40×440×41480NO.5321.15LMY40×440×414806.5 设备的选择选择的原则:所选设备的额定电压U不应小于所在线路的额定电压U,即:UU;所选设备的额定电流I不应小于所在电路的计算电流I,即:II;所选设备的额定开断电流I或断流容量S不应小于设备分段瞬间的的短路电流有效

41、值I或短路容量D,即:II或SD。6.5.1 高压侧设备的选择表6.3 高压侧设备列表装置地点条件参数/KV/A/KA/KA量程10152.048.6422.03设备型号规格参数隔离开关GN19-10/4001040031.512.5电流互感器LQJ-10- 200/510400/5160××0.4=90.50高压断路器SN10-10I/630106301640高压熔断器RN2-10/0.510500200电压互感器JDZ-10-10000/10010/0.1避雷器FS4-1010 6.5.2 各车间进线设备的选择各变电所回路电流计算值:NO.1变电所:回路电流=51.29

42、A,电压=10KV;NO.2变换所:回路电流=49.14A,电压=10KV;NO.3变电所:回路电流=22.19A,电压=10KV;NO.4变电所:回路电流=16.78A,电压=10KV;NO.5变电所:回路电流=12.66A,电压=10KV。此处设备器材均以K1点的短路电流来进行动稳定和热稳定校验,因此各车间变电所10KV进线回路设备相同。此处只列出第一车间的设备型号,其他车间选用设备型号均相同。 表6.4 高压侧设备列表 装置地点条件参数/KV/A/KA/KA量程1051.298.6422.03设备型号规格参数高压隔离开关GN9-10/4001040031.512.5高压断路器SN10-1

43、0I/630106301640电流互感器LQJ-10- 150/510150/51600.15=33.9126.566.5.3各变电所低压侧出线回路设备选择与校验表1. NO.1车间变电所:低压侧回路电流A,V表6.5 NO.1变电所低压侧进线设备装置地点条件参数/KV/A/KA/KA量程101300.4328.0351.58=1790.71设备型号规格参数低压断路器DW15-1500/30.38150040低压刀开关HD13-1500/300.381500电流互感器LMZJ1-0.5-1500/50.51500/52. NO.2车间变电所:低压侧回路电流A,V表6.6 NO.2变电所低压侧进

44、线设备装置地点条件参数/KV/A/KA/KA量程101246.128.0351.58=1790.71设备型号规格参数低压断路器DW15-1500/30.38150040低压刀开关HD13-1500/300.381500电流互感器LMZJ1-0.5-1500/50.51500/53 NO.3车间变电所,低压侧回路电流A,V表6.7 NO.3变电所低压侧进线设备装置地点条件参数/KV/A/KA/KA量程10503.6516.6930.17=1790.71设备型号规格参数低压断路器DW15-600/30.3860030低压刀开关HD13-600/300.38600电流互感器LMZJ1-0.5-600

45、/50.5600/54. NO.4车间变电所,低压侧回路电流A,V表6.8 NO.1变电所低压侧进线设备装置地点条件参数/KV/A/KA/KA量程10425.3113.5524.93=403.93设备型号规格参数低压断路器DW15-600/30.3860030低压刀开关HD13-600/300.38600电流互感器LMZJ1-0.5-500/50.5500/55. NO.5车间变电所,低压侧回路电流A,V表6.9 NO.5变电所低压侧进线设备装置地点条件参数/KV/A/KA/KA量程10321.1510.8119.89=257.08设备型号规格参数低压断路器DW15-600/30.384002

46、5低压刀开关HD13-600/300.38400电流互感器LMZJ1-0.5-400/50.5400/5第7章 过电流保护7.1 高压进线的继电保护1) 装设定时限过电流保护,采用DL-15型电磁式过电流继电器。1 过电流保护动作电流的整定 式中=2,为线路的计算电流,数值2应为电动机的自启动系数 ,=139.163A,,=1,=0.8,=200/5=40,因此动作电流为:,因此过电流保护动作电流整定为12A。2 过电流保护动作时间的整定过电流保护动作时间整定为2s。3 过电流保护灵敏系数的检验 式中 在电力系统最小运行方式下,高压线路末端两相短路:7482.24 A继电保护的动作电流换算到一

47、次电路的值,称为一次动作电流:480 A因此其保护灵敏系数为: 15.588>1.5,灵敏系数满足要求。2) 装设电流速断保护,利用DL-15的速断装置。1 电流速断保护动作电流的整定式中为被保护线路末端的三相短路电流,这里=8.64KA,=1,=200/5=40,因此动作电流为:259.2 A因此动作电流整定为260A。整定的速断电流倍数:2 电流速断保护灵敏系数的校验式中为在电力系统最小运行方式下,被保护线路首端的两相短路电流,7482.24 A为速断电流折算到一次电路的值:因此灵敏度系数为:2,满足灵敏度系数的要求。7.2 各变电所进线的保护NO.1车间变电所高压进线的保护:1)

48、装设定时限过电流保护,采用DL-15型电磁式过电流继电器。1 过电流保护动作电流的整定式中=2,为线路的计算电流,数值2应为电动机的自启动系数, =51.28A,=1,=0.8,=150/5=30,因此动作电流为:5.129 A因此过电流保护动作电流整定为6A。2 过电流保护动作时间的整定 式中为后一级保护的线路首端发生三相短路时,前一级保护的动作时间;为后一级保护中最长的一个动作时间,为前后两级保护装置的时间级差,对定时限过电流保护取0.5s,前一级保护动作时间为2s,所以过电流保护动作时间整定为1.5s。3 过电流保护灵敏系数的检验式中为在电力系统最小运行方式下,被保护线路末端的两相短路电

49、流,为动作电流折算到一次电路的值,因此其灵敏度系数为: 1.5,满足灵敏度系数的要求。2) 装设电流速断保护1 电流速断保护动作电流的整定式中为被保护线路末端的三相短路电流,这里=8.64KA,=1,=150/5=30,因此动作电流为:345.6 A因此动作电流整定为246A。整定的速断电流倍数为:2 电流速断保护灵敏系数的校验式中为在电力系统最小运行方式下,被保护线路首端的两相短路电流7482.24 A 为速断电流折算到一次电路的值,因此其灵敏度系数为:41.5682,满足灵敏度系数的要求。其他变电所高压侧进线的保护方案与NO.1变电所的保护方案相同。7.3 变压器继电保护变压器的继电保护装

50、置(NO.1变电所选用的S91000/10型变压器)1) 装设定时限过电流保护,采用DL-15型电磁式过电流继电器,两相两继电器式接线,去分流跳闸的操作方式。1 过电流保护动作电流的整定其中:115.5 A可靠系数,接线系数,继电器返回系数,电流互感器的电流比=150/5=30 ,动作电流为:,因此过电流保护动作电流整定为6A。2 过电流保护动作时间的整定:,式中 为变压母线发生三相短路时高压侧继电保护的动作时间,在变压器低压侧保护装置发生低压母线发生三相短短时的一个最长的动作时间,为前后两极保护装置的时间级差,对定时限过电流保护,可取0.5s,对反时限过电流保护可取0.7s。必须注意:对反时限过电流保护装置,由于其过电流继电器的整定时间只能是“10的倍动作电流的动作时间”,因此整定时必须借助继电器的动作特性曲线,以确定相应的实际动作时间,或由实际动作时间确定整定时间。但是,对于变压器的过电流保护时,其动作时间一般整定为住0.6s即可满足要求。3 过电流保护灵敏系数的检验 其中:=0.86628.03kA÷(10kV÷0.4kV)=971A;因此其灵敏度系数为: 5.391.5,满足灵敏

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论