

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题椭圆C:1(ab0)的离心率e,ab3()求椭圆C的方程;()如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2mk为定值如图,椭圆C:1(ab0)经过点P(1,),离心率e,直线l的方程为x4()求椭圆C的方程;()AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3问:是否存在常数,使得k1k2k3.若存在,求的值;若不存在,说明理由椭圆C:1(ab0)的左右焦点分别是F1,F
2、2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1()求椭圆C的方程;()点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;()在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k0,试证明为定值,并求出这个定值二、圆锥曲线中的最值问题在平面直角坐标系xOy中,椭圆C:1(ab0)的离心率为,直线yx被椭圆C截得的线段长为()求椭圆C的方程;()过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点)点D在椭圆C上,且ADAB,直
3、线BD与x轴、y轴分别交于M,N两点(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数使得k1k2,并求出的值;(ii)求OMN面积的最大值已知抛物线C:y22px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|FD|当点A的横坐标为3时,ADF为正三角形()求C的方程;()若直线l1l,且l1和C有且只有一个公共点E,()证明直线AE过定点,并求出定点坐标;()ABE的面积是否存在最小值.若存在,请求出最小值;若不存在,请说明理由如图,O为坐标原点,椭圆C1:1(ab0)的左、右焦点分别为F1,F2,离心率为e1;双曲线
4、C2:1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2,且|F2F4|1()求C1、C2的方程;()过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值三、圆锥曲线与过定点(定直线)问题设椭圆E:1的焦点在x轴上()若椭圆E的焦距为1,求椭圆E的方程;()设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1PF1Q,证明:当a变化时,点P在某定直线上四、圆锥曲线与求参数在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为()求椭圆C的方程;()
5、A,B为椭圆C上满足AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设t,求实数t的值五、存在性问题如图,已知椭圆1(ab0)过点(1,),离心率为,左、右焦点分别为F1、F2点P为直线l:xy2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点()求椭圆的标准方程;()设直线PF1、PF2的斜线分别为k1、k2证明:2;问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOAkOBkOCkOD0.若存在,求出所有满足条件的点P的坐标;若不存在,说明理由六、轨迹方程已知椭圆C:1(ab0)的两个焦点分别为F1(1,0),F2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年劳务安全协议书:华区餐饮服务业员工劳动保护合同
- 2025年度企业内部数据保密管理协议书模板
- 2025年度地质勘查技术服务与数据共享合同
- 专卖店装修保修合同模板
- 2024年佛山外向型骨干企业全球化发展白皮书-佛山市贸促会
- 2025年度商用复印机购销合同附带原装耗材包
- 商务办公区装修合同
- Unit 3 Keep fit Section B 1a-1d 教学设计 2024-2025学年人教版英语七年级下册
- 浮力(教学设计)2023-2024学年教科版五年级科学下册
- 2023-2024学年天津市南开区高中学业水平合格性考试模拟考试生物试卷
- ASTM标准全部目录(中文版)
- 《汽车电气设备构造与维修》 第4版 课件 第3、4章 电源系统、发动机电器
- 辽海版小学美术六年级下册全册教案
- 2023年南京市鼓楼区建宁路街道安监办招聘专职安全员考试真题及答案
- 2024陕西延长石油集团矿业公司所属单位招聘笔试参考题库附带答案详解
- 乡镇精神卫生工作总结
- 井工煤矿中长期防治水规划编制细则
- 2024年湘中幼儿师范高等专科学校高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 设备使用手册(范例模板)
- 上海房屋修缮工程培训课件
- 医院电梯安全操作培训记录
评论
0/150
提交评论