高中数学函数综合题难题讲解_第1页
高中数学函数综合题难题讲解_第2页
高中数学函数综合题难题讲解_第3页
高中数学函数综合题难题讲解_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学综合题(难题)难点磁场()设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=4.(1)求证:f(x)为奇函数;(2)在区间9,9上,求f(x)的最值.案例探究例1设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x20,都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.(1)求f()、f();(2)证明f(x)是周期函数;(3)记an=f(n+),求分析技巧与方法:由f(x1+x2)=f(x1)·f(x2)变形为是解决问题的关键.(1) 解:因为对

2、x1,x20,都有f(x1+x2)=f(x1)·f(x2),所以f(x)=0,x0,1又因为f(1)=f(+)=f()·f()=f()2f()=f(+)=f()·f()=f()2又f(1)=a>0f()=a,f()=a(2)证明:依题意设y=f(x)关于直线x=1对称,故f(x)=f(1+1x),即f(x)=f(2x),xR.又由f(x)是偶函数知f(x)=f(x),xRf(x)=f(2x),xR.将上式中x以x代换得f(x)=f(x+2),这表明f(x)是R上的周期函数,且2是它的一个周期.(3)解:由(1)知f(x)0,x0,1f()=f(n·

3、)=f(+(n1) )=f()·f(n1)·)=f()·f()··f()=f()n=af()=a.又f(x)的一个周期是2f(2n+)=f(),因此an=a歼灭难点训练一、选择题1.()函数y=x+a与y=logax的图象可能是( )2.()定义在区间(,+)的奇函数f(x)为增函数,偶函数g(x)在区间0,+)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:f(b)f(a)>g(a)g(b) f(b)f(a)<g(a)g(b) f(a)f(b)>g(b)g(a) f(a)f(b)<g(b)g(a)

4、其中成立的是( )A.与B.与C.与D.与二、填空题3.()若关于x的方程22x+2xa+a+1=0有实根,则实数a的取值范围是_.三、解答题4.()设a为实数,函数f(x)=x2+|xa|+1,xR.(1)讨论f(x)的奇偶性;(2)求f(x)的最小值.5.()设f(x)=.(1)证明:f(x)在其定义域上的单调性;(2)证明:方程f-1(x)=0有惟一解;(3)解不等式fx(x)<.6.()定义在(1,1)上的函数f(x)满足对任意x、y(1,1),都有f(x)+f(y)=f();当x(1,0)时,有f(x)>0.求证:.7.()某工厂拟建一座平面图(如下图)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.8.()已知函数f(x)在(,0)(0,+)上有定义,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论