永磁同步电动机矢量控制模型的设计与仿真_第1页
永磁同步电动机矢量控制模型的设计与仿真_第2页
永磁同步电动机矢量控制模型的设计与仿真_第3页
永磁同步电动机矢量控制模型的设计与仿真_第4页
永磁同步电动机矢量控制模型的设计与仿真_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、永磁同步电动机矢量控制模型的设计与仿真交流调速理论包括矢量控制和直接转矩控制。1971年,由FBlaschke提出的矢量控制理论第一次使交流电机控制理论获得了质的飞跃。矢量控制采用了矢量变换的方法,通过把交流电机的磁通与转矩的控制解耦使交流电机的控制类似于直流电动机。矢量控制方法在实现过程中需要复杂的坐标变换,而且对电机的参数依赖性较大。直接转矩控制是1985年Depenbrock教授在研究异步电机控制方法时提出的。该方法是在定子坐标系下分析交流电机的数学模型,强调对电机的转矩进行直接控制,对转矩进行砰一砰控制,无需解耦,省掉了矢量旋转变换计算。控制定子磁链而不是转子磁链,不受转子参数变化的影

2、响,但不可避免地产生转矩脉动,低速性能较差,调速范围受到限制。而且由于它对实时性要求高、计算量大,对控制系统微处理器的性能要求也较高。矢量控制的基本思想是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分解成为产生磁通的励磁电流分量和产生转矩的转矩电流分量,并使得两个分量互相垂直,彼此独立,然后分别进行调节。这样交流电动机的转矩控制,从原理和特性上就和直流电动机相似了。控制策略的选择上是PID控制,传统的数字PID控制是一种技术成熟、应用最为广泛的控制算法,其结构简单,调节方便。1 永磁同步电机的数学模型1.1 永磁同步电机系统的结构永磁同步电机的基本组成

3、:定子绕组、转子、机体。定子绕组通过三相交流电,产生与电源频率同步的旋转磁场。转子是用永磁材料做成的永磁体,它在定子绕组产生的旋转磁场的作用下,开始旋转。1.2 坐标变换坐标变换,从数学角度看,就是将方程中原来的一组变量,用一组新的变量来代替。线性变换是指这种新旧变量之间存在线性关系。电动机中用到的坐标变换都是线性变换。在永磁同步电机中存在两种坐标系,一种是固定在定子上的它相对我们是静止的,即:, 坐标系,它的方向和定子三相绕组的位置相对固定,它的方向定位于定子绕组 A 相的产生磁势的方向,另一种是固定在转子上的旋转坐标系,我们通常称之为 d,q坐标,其中 d 轴跟单磁极的 N 极方向相同,即

4、和磁力线的方向相同,q 轴超前 d 轴 90 度下图所示。在矢量控制中,我们获取的是定子绕组上的三相电流,所以我们还需要做的一个问题是怎么把三相电流产生的电流矢量等效到,坐标系中和 d,q 坐标系中去。先讨论,坐标系和 A,B,C 三相之间的变换(以电流为例)。对于任意矢量有:同时有:把电流在上图进行分解的得:分别是向量在轴轴 A 轴 B 轴和 C 轴上的投影。考虑到电枢绕组在不同坐标系的合成磁势相等和功率不变等因数,需要在它前面加了个系数。/dq(Park变换)和其逆变换如下:由于矢量控制能为永磁同步电机带来像直流电机一样的调速性能,而矢量控制又是建立在坐标变换理论下的体系,因此我们有必要讨

5、论一下永磁同步电机在 d,q坐标系下的数学模型。其电路方程如下:转矩方程如下:在永磁同步电机中通常采用 id = 0,所以:可见电磁转矩和 q 轴电流成正比,只要对电流进行控制就达到了控制转矩的目的。同时这样也能保证最大的输出转矩。其运动方程如下:其中TL,J 分别为电机的阻转矩和转动系统的转动惯量。2 永磁同步电机矢量控制及空间矢量脉宽调制2.1矢量控制的基本概念1971年,德国学者Blaschke和Hasse提出了交流电动机的矢量控制(Transvector contr01)理论,它是电动机控制理论的第一次质的飞跃,解决了交流电机的调速问题,使得交流电机的控制跟直流电机控制一样的方便可行,

6、并且可以获得与直流调速系统相媲美的动态功能。其基本思想是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分解成为产生磁通的励磁电流分量和产生转矩的转矩电流分量,并使得两个分量互相垂直,彼此独立,然后分别进行调节。交流电机的矢量控制使转矩和磁通的控制实现解耦。所谓解耦指的是控制转矩时不影响磁通的大小,控制磁通时不影响转矩。这样交流电动机的转矩控制,从原理和特性上就和直流电动机相似了。因此矢量控制的关键仍是对电流矢量的幅值和空间位置(频率和相位)的控制。矢量控制是通过对两个电流分量的分别控制实现的。根据电机方程所确定的电磁关系,一定的转矩和转速对应于一定的id

7、和iq,通过对这两个电流的控制,跟踪相应的给定值,便实现了对电机转矩和转速的控制。而且由于位于d,q轴的电流分量相互正交,使对转矩的控制和对磁场的控制实现了解耦,因此便于实现各种先进的控制策略。对于永磁同步电机,转子磁通位置与转子机械位置相同,这样通过检测转子实际位置就可以得知电机转子磁链位置,从而使永磁同步电机的矢量控制比起异步电机的矢量控制大大简化。当id=0时,从电机端口看,永磁同步电机相当于一台他励直流电机。定子电流中只有q轴分量,且定子磁动势空间矢量与永磁体磁场空问矢量正交,在一定的定子电流幅值下能够输出最大的转矩。2.2 同步电机的矢量控制三相电动机由三相对称正弦交流电源供电时(2

8、-1) 该式说明,当磁链幅值一定时,U的大小与成正比,或者说供电电压与频率成正比,其方向是磁链轨迹方向的切线方向。当磁链矢量在空间旋转一周时,电压矢量也连续地按磁链圆的切线方向运动2弧度,其运动轨迹与磁链圆重合。这样,电动机旋转磁场的形状问题就可转化为电压空间矢量运动轨迹的形状问题来讨论。电压空间矢量是按照电压所加在绕组的空间位置来定义的。经典的SPWM控制目的是使逆变器的输出电压尽量接近正弦波,而电流波形会受到负载电路参数的影响,并且电压利用率较低。为此提出了电压空间矢量PWM(SVPWM)技术。SVPWM也称作磁链轨迹法,从原理上讲,把电动机与PWM逆变器看作一体,着眼于如何使电机获得幅值

9、恒定的圆形磁场,当电机通以三相对称正弦电压时,交流电机内产生圆形磁链,SVPWM以此圆形磁链为基准,通过逆变器功率器件的不同开关模式产生有效电压矢量来逼近基准圆,即用多边形来逼近圆形。SVPWM法则由三相逆变器不同的开关模式所产生的实际磁链矢量去逼近基准磁链圆,并由它们比较的结果决定逆变器的开关状态,形成PWM波形。该控制方法具有开关损耗小、电机转矩脉动低、电流波形畸变小、直流电压利用率提高的优点。SVPWM采用id=0的转子磁链定向控制后,此时电动机转矩和电流iq呈线性关系,只要对iq进行控制就可以达到控制转矩的目的 。并且,在表面式永磁同步电机中,保持id=0可以保证用最小的电流幅值得到最

10、大的输出转矩。因此只要能准确地检测出转子位置(d轴),使三相定子电流的合成电流矢量位于q轴上,那么,只要控制定子电流的幅值,就能很好地控制电磁转矩,这和直流电动机的控制原理类似。本控制系统采用的是令id=0,此时转矩和iq成线性关系,只要控制iq即可达到对转矩的控制,其矢量控制仿真结构图如下:图2-1 矢量控制同步电机结构图矢量控制的目的是为了改善转矩控制性能,而最终实施仍然是落实到对定子电流(交流量)的控制上。由于在定子侧的各个物理量,包括电压、电流、电动势、磁动势等等,都是交流量,其空间矢量在空间以同步转速旋转,调节、控制和计算都不是很方便。因此,需要借助于坐标变换,使得各个物理量从静止坐

11、标系转换到同步旋转坐标系,然后,站在同步旋转坐标系上进行观察,电动机的各个空间矢量都变成了静止矢量,在同步坐标系上的各个空间矢量就都变成了直流量,可以根据转矩公式的几种形式,找到转矩和被控矢量的各个分量之间的关系,实时的计算出转矩控制所需要的被控矢量的各个分量值,即直流给定量。按照这些给定量进行实时控制,就可以达到直流电动机的控制性能。由于这些直流给定量在物理上是不存在的,是虚构的,因此,还必须再经过坐标的逆变换过程,从旋转坐标系回到静止坐标系,把上述的直流给定量变换成实际的交流给定量,在三相定子坐标系上对交流量进行控制,使其实际值等于给定值。 3. SVPWM产生原理SVPWM 是空间电压矢

12、量 PWM 波产生,它具有电压利用率高、低谐波成分、开关次数少和功率管功耗小等特点。同时,SVPWM 还能很好的结合矢量控制算法,为矢量控制得实现提供很好的途径,以最大限度的发挥设备的性能。因此被越来越多的变频设备所采用。3.1电压空间矢量SVPWM技术的基本原理电压矢量与磁链矢量的关系: 当用三相平衡的正弦电压向交流电机供电时,电动机的定子磁链空间矢量幅值恒定,并以恒速旋转,磁链矢量的运动轨迹形成圆形的空间旋转磁场(磁链圆)。因此如果有一种方法,使得逆变电路能向交流电动机提供可变频、并能保证电动机形成定子磁链圆,就可以实现交流电动机的变频调速。电压空间矢量是按照电压所加在绕组上的空间位置来定

13、的。电动机的三相定子绕组可以定义一个三相平面静止坐标系:这是一个特殊的坐标系,它有三个轴,互相间隔120度,分别代表三个相。三相定子相电压Ua, Ub, Uc,分别施加在三相绕组上,形成三个相电压空间矢量Ua, Ub, Uc,它们的方向始终在各相的轴线上,大小则随着时间按正弦规律变化。因此,三个相电压空间矢量相加所形成的一个合成电压空间矢量是一个以电源角频率w速度旋转的空间矢量。同样的,也可以定义电流和磁链的空间矢量I和 。因此有:当转速不是很低的时候,定子电阻R的压降相对较小。该式说明,当磁链幅值一定时,u的大小与成正比,或者说供电电压与频率f成正比。其方向是磁链轨迹方向的切线方向。当磁链矢

14、量在空间旋转一周时,电压矢量也连续地按磁链圆的切线方向运动2弧度,其运动轨迹与磁链圆重合。这样,电动机旋转磁场的形状问题就可转化为电压空间矢量运动轨迹的形状问题来讨论。永磁同步电机的矢量控制原理本质上就是围绕着如何建立一个旋转的空间磁场,电机转动实质上就是空间磁场的转动。4. 系统仿真模型4.1 MATLAB动态仿真工具SlMULINK简介MATLAB是由Math Works公司开发的一种主要用于数值计算及可视化图形处理的高科技计算语言。它将数值分析、矩阵计算、图形处理和仿真等诸多强大功能集成在一个极易使用的交互式环境中,为科学研究、工程设计以及必须进行有效数值计算的许多科学提供了一种高效率的

15、编程工具,集科学计算、自动控制、信号处理、神经网络、图像处理等于一体。在MATLAB中,SIMULINK是一个比较特别的工具箱,它具有两个显著的功能:SMU(仿真)与LINK(链接),是实现动态系统建模、仿真的一个集成环境。它支持连续、离散或两者混合的线性和非线性系统,也支持具有多种采样速率的多速率系统。SIMULINK为用户提供了用方框图进行建模的图形接口,具有直观、方便、灵活的优点。利用MATLABSimulink进行系统的辅助设计,在可以做出实际系统之前,预先对系统进行仿真和分析,并可以做适当的实时修正,增强系统的性能,减少系统反修改的时间,实现有效开发系统的目的。在Simulink l

16、ibrary brower中列出了各模块的目录,其中主要模块有Source源模块,Sink显示和输出模块,Continuous连续性函数模块,Nonlinear非线性函数模块,Signal Systems信号系统函数模块等口。4.2 永磁同步电机仿真模型的建立为建立永磁同步电机矢量控制的系统仿真模型,首先需要一个比较准确反映电机特性的电机模型。在SIMULINK中己经提供了一个永磁同步电机的仿真模块,它封装了电机的主要电压方程和机械方程。在本仿真系统里,使用的是MATLABSIMULINK提供的永磁同步电动机模型。在SVPWM模块的基础上,结合PWM实现模块、逆变器模块、PI调节器模块、坐标变

17、换模块等就构成了基于SVPWM的永磁同步电机控制系统的仿真模型。模型如图所示。4.3 双闭环仿真系统的建立1)速度PI控制2)电流PI控制3)坐标变换(1)坐标变换(dp/abc)仿真模型(2)坐标变换(abc/dp)仿真模型依据前述为永磁同步电机系统仿真所建立的各个模块的输入输出关系,可以根据双环矢量控制的原理构建系统的仿真模型。其中所谓双环是指内部的电机电流PI调节反馈控制环路和外部的电机速度PI反馈控制环路。选择电流作为控制变量的基本原因是,在磁场定向控制时,电磁转矩和磁通解耦后直接受控于定子电流的转矩分量和磁链分量,通过控制电流就可以有效地控制转矩和磁链。图4-1中是双闭环矢量控制仿真模型的系统框图,其中电流环的反馈包含有转子位置的反馈。速度环反馈包含转子速度的反馈。参数调节总结如下:1)比例系数Kp作用在于加快系统的响应速度,提高系统调节精度。Kp越大,系统的响应速度越快,但将产生超调和振荡甚至导致系统不稳定,因此Kp不能取的过大;如果Kp取值较小,则会降低调节精度,使响应速度缓慢,从而延长调节时间,使系统动、静态特性变坏。2)积分环节作用系数Ki的作用在于消除系统的稳态误差。Ki越大,积分速度越快,系统稳态误差消除越快;但Ki过大,在响应过程的初期以及系统在过渡过程中会产生积分饱和现象,从而引起响应过程出现较

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论