版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 向量的减法 (一一)知识目标知识目标 1理解相反向量的概念理解相反向量的概念 2. 2. 理解向量减法的定义,理解向量减法的定义,3. 正确熟练地掌握向量减法的三角形法则正确熟练地掌握向量减法的三角形法则 学习目标学习目标 (二二)学习重点学习重点 重点:向量减法的定义、向量减法的三角形法则重点:向量减法的定义、向量减法的三角形法则 向量的减法授课教师:侯继美授课教师:侯继美指导教师指导教师 : : 董翠霞董翠霞 (一一)知识目标知识目标 1理解相反向量的概念理解相反向量的概念 2. 2. 理解向量减法的定义,理解向量减法的定义,3. 正确熟练地掌握向量减法的三角形法则正确熟练地掌握向量减法
2、的三角形法则 学习目标学习目标 (二二)学习重点学习重点 重点:向量减法的定义、向量减法的三角形法则重点:向量减法的定义、向量减法的三角形法则1、向量加法的、向量加法的三角形法则三角形法则baOa a a a a a a abbbbbbbBbaA注意:注意:a+b各向量各向量“首尾相连首尾相连”,和向量由第一个向,和向量由第一个向量的起点指向最后一个向量的终点量的起点指向最后一个向量的终点. .温故知新温故知新baAa a a a a a a abbbBbaDaCba+b作法作法:(1)在平面内任取一点在平面内任取一点A; (2)以以点点A为起点为起点以向量以向量a、b为邻边作平行为邻边作平行
3、 四边形四边形ABCD.即即ADBCa,AB=DC=b ; (3)则以)则以点点A为起点为起点的对角线的对角线ACa+b.2、向量加法的、向量加法的平行四边形法则平行四边形法则注意起点相同注意起点相同. .共线向量不适用共线向量不适用走进新课走进新课F2FF11F F 2F 已知:两个已知:两个力的合力为力的合力为求:另一个力求:另一个力 其中一个力为其中一个力为减去一个向量等于加上这个向量的相反向量)( baba说明:说明:、与、与 长度相等、方向相反的向量,长度相等、方向相反的向量, 叫做叫做 的相反向量的相反向量、零向量的相反向量仍是零向量、零向量的相反向量仍是零向量、任一向量和它相反向
4、量的和是零向量、任一向量和它相反向量的和是零向量(),a b ab 定义:求两个向量差的运算叫向量的减法。 表示:bb1()_(2)()_()_(3),_,_,_aaaaaa babab ()如果互为相反的向量,那么练习a00ba0呢?作出根据减法的定义,如何已知baba,abOAabBbCDba, ,.a bbaab 方法:平移向量使它们起点相同,那么的终点指向 的终点的向量就是二、向量减法的三角形法则二、向量减法的三角形法则OABabba 1O在 平 面 内 任 取 一 点 2OAa,OBb 作 3ab则向量BA. 注意:注意: 1、两个向量相减,则表示两个向量起点的字母必须相同 2、差向
5、量的终点指向被减向量的终点向量的减法向量的减法特殊情况特殊情况1.共线同向共线同向2.共线反向共线反向abBACababABCab例:例: 如图,已知向量如图,已知向量a,b,c,d, 求作向量求作向量a-b,c-d.abcdabcdOABCDabcd 例2:选择题 ( )( )( )()ABACDBA ADB ACC CDD DC (2) ( )( )( )()ABBCADA ADB CDC DBD DC (1)DC3,ABCD ABaDAb OCcbcaOA 例 :如图平行四边形证明:ABCDabcOOABAOBABOBacbOBCBOCOCDAcb证明:练习1.,. 1baba求作如图,
6、已知abaaabbb(1)(2)(3)(4)练习2CDBDACAB化简) 1 (0:CDCDCDBDCB原式解COBOOCOA化简)2(BAOBOACOOCBOOA0)()()(:原式解Come on! 知识小结知识小结1、理解向量减法的定义2、掌握向量减法的三角形法则并能加以运用化归思想,分类讨论思想与数形结合思想思想方法小结思想方法小结Thank all the teachers For attending to guide us.,120| | 3|oABa ADbDABababab 练习、如图已知向量,且,求和120oabADBCO|ba|DB|ba|AC|baDBbaAC3|AB|AD|ABCDADAB,故,由向量的加减法知,故此四边形为菱形由于,为邻边作平行四边形、解:以120oabADBCO33 3| |sin60322oAODODAD 由于菱形对角线互相垂直平分,所以是直角三角形,33|ba|3|ba|,所以3|AC|ADC60DAC120D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年保山c1客运资格证考试项目
- 2024年珠海道路旅客运输从业资格证模拟试题
- 吉首大学《结构模型设计制作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《音乐美学Ⅰ》2021-2022学年第一学期期末试卷
- 吉林艺术学院《色彩基础训练II》2021-2022学年第一学期期末试卷
- 2024年共同经营宾馆合作协议书模板
- 2024年供货肉类合同范本
- 2024年大宗商办租赁合同范本
- 2024年大型储罐合同范本
- 公司与公司劳务外包协议书范文范本
- 个人开车与单位免责协议书
- 《护理文书书写》课件
- 2024年小轿车买卖合同标准版本(三篇)
- 动火作业施工方案5篇
- 河南省郑州市第四中学教育集团2024-2025学年七年级上学期期中地理试题
- 八年级生物中考备考计划
- 2024-2030年全球及中国湿巾和卫生纸行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024高考物理一轮复习 第13讲 牛顿第二定律的基本应用(课件)
- 公务员2019年国考《申论》真题及答案(省级)
- 2024年会计专业考试初级会计实务试卷与参考答案
- 职业技术学院材料工程技术专业调研报告
评论
0/150
提交评论