![儿童麻疹流行蔓延的数学模型_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/03e3e38a-281f-4272-8d7e-8d46d141cc4f/03e3e38a-281f-4272-8d7e-8d46d141cc4f1.gif)
![儿童麻疹流行蔓延的数学模型_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/03e3e38a-281f-4272-8d7e-8d46d141cc4f/03e3e38a-281f-4272-8d7e-8d46d141cc4f2.gif)
![儿童麻疹流行蔓延的数学模型_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/03e3e38a-281f-4272-8d7e-8d46d141cc4f/03e3e38a-281f-4272-8d7e-8d46d141cc4f3.gif)
![儿童麻疹流行蔓延的数学模型_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/03e3e38a-281f-4272-8d7e-8d46d141cc4f/03e3e38a-281f-4272-8d7e-8d46d141cc4f4.gif)
![儿童麻疹流行蔓延的数学模型_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/03e3e38a-281f-4272-8d7e-8d46d141cc4f/03e3e38a-281f-4272-8d7e-8d46d141cc4f5.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实验报告1 实验题目儿童麻疹流行蔓延的数学模型2 实验问题陈述试组建一个能描述儿童麻疹流行蔓延的数学模型,我们将考虑在接种疫苗成为有效的防疫手段之前的麻疹的流行。下表一给出了英国伦敦在1647年-1660年间每年麻疹病的死亡人数。表一:伦敦每年麻疹死亡人数(1647-1660)年代4748495051525354555657585960人数5923333362852111531580674可以看出,它是以2年为周期的周期性流行。已知麻疹的潜伏期是0.5周,在这段时期内一个被感染的孩子表面看来是正常的,但却会传染给别人。过了这段时间后,患病的孩子一直被隔离到痊愈为止。痊愈后孩子是免疫的。假设每个
2、感染者随机地与他人接触。证明你的模型有某种周期性质。如果不然,就修改你的模型。因为麻疹的流行肯定是趋于周期式地出现的。估计你组建的模型中的参数,以拟合0.5周的潜伏期及2年周期性流行的观测结果。判断估计出的参数是否实际。3 实验目的通过表中数据,建立麻疹流行蔓延模型,以拟合0.5周的潜伏期及2年周期性流行的观测结果,判断估计出的参数是否实际。4 实验内容模型假设:(1)除感病特征外,人群中的个体间没有差异,感病者与易感者的个体在人群中混合是均匀的。(2)人群的数量足够大,只考虑传染过程的平均效应。(3)易感者感病的机会与他接触感病者的机会成正比。(4)疾病的传染率为常数。(5)一般的麻疹爆发在
3、几十天,我们不考虑在一次麻疹爆发时间内某地区的出生人口和死亡人口,以及人口的迁入和迁出。(6)感病痊愈者(即移出者)移出模型,而不再成为易感者人群中的成员。变量说明:S(t):易感者在人群中所占的比例I(t):感病者在人群中所占的比例R(t):移出者在人群中所占的比例 K:疾病的传染率 h:单位时间内痊愈的百分数一个传染期内每个病人有效接触易感者的平均人数,成为接触数-初始时刻问题分析:对麻疹流行蔓延的周期性质进行说明。通过对SIR模型及麻疹流行的机理分析,在一次麻疹爆发以后绝大多数人体内具有了麻疹免疫抗体,因此绝大多数新生婴儿体内具有抗体,考虑到引起流行周期的原因是易感人群的积累,易感人群来
4、源于新生儿因母体抗体逐渐消失而易感、既往没有患过麻疹的儿童和成人。通常认为在自然感染状态下,这些易感者积累到一个以上出生队列时,就达到爆发的“临界”。若将同一年出生的人群组定义为一个出生队列,出生队列出现的周期性在一定程度上可以说明麻疹流行的周期性。所以我们用积累一个出生队列的时间来表示一次爆发的临界。模型建立通过对问题的分析,模型可以表示为:,其中考虑到初始条件,可知上述三个方程是相容的,因此可以化简为:由于方程组无法求出解析解,故可以在S-I的像平面上讨论解的性质,相轨线的定义域为:由以上方程可知轨线的方程为:,其解为:。5 实验结果分析与讨论由题目中表格给出的麻疹死亡人数与年份的对应关系
5、,用MATLAB编程画出的曲线图如图一所示:【图一】 由于对S(t)和I(t)的求1解非常困难,所以先用数值计算的方法来预估计S(t)和I(t)的一般变化规律。在方程(1)中设k=1,h=0.3,I(0)=0.02,S(0)=0.98。编写MATLAB程序并运行得到如图二, 【图二】【注】图中蓝色曲线为I(t),即病人比例;绿色曲线为S(t),即健康人比例。从时间流程图中可以看出,随着时间的增加,S(t)单调递减,I(t)在时达到峰值以后会随时间减小,当时,S(t)值很小,而I(t)=0。说明在一次麻疹疫情爆发以后绝大多数的人体内已经具有麻疹免疫抗体,被移出除传染系统。c. 对结果的分析参数中
6、取h为0.3,则潜伏期为1/h=3.33天,约等于0.5周。同时我们可以看到把h取为0.3得到的曲线符合实际情况,说明潜伏期为麻疹病毒的潜伏期是0.5周是正确的观点。另外,当时,说明在一次麻疹疫情爆发以后绝大多数的人体内已经具有麻疹免疫抗体,被移出除传染系统。查资料知,绝大多数的婴儿在9个月时血内的母亲抗体已测不出,有些婴儿体内的抗体存在时间可以长达15个月,所以可以取1年为一个出生队列产生的时间,用时间坐标来表示出生队列与麻疹流行周期的关系如图三: 【图三】【注】:表示第一年的年初;表示第一年年末;表示第二年年初;表示第二年年末;在时刻出生的婴儿到时刻抗体消失,时刻出生的婴儿到时刻抗体消失。
7、易感人群从时刻开始积累,在时刻易感人群刚好积累一个出生队列,因此易感人群积累一个出生队列的时间为2年。当易感人群积累到一个出生队列时,就是第二次麻疹爆发的“临界”,因此可以说麻疹流行的周期为2年。综上所述,儿童麻疹流行蔓延的模型具有周期性,且以0.5周的潜伏期和2年的周期性流行。故模型所得结果与题目要求是一致的。6 实验程序(Matlab或者其它软件语言陈述)用MATLAB编写程序如下:(1) 画图一:x=47:60;y=5 92 3 33 33 62 8 52 11 153 15 80 6 74;plot(x,y,rp-.)xlabel(年份); ylabel(伦敦每年麻疹病死亡人数);(2) S(t)和I(t)的变化规律及画图三M文件为:(chuanran.m)function y=chuanran(t,x)a=1;b=0.3;y=a*x(1)*x(2)-b*x(1);-a*x(1)*x(2);命令框中输入: ts=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人干股协议合同范本
- 2025至2030年中国熄火电磁阀数据监测研究报告
- 2025至2030年中国测试话筒数据监测研究报告
- 机械设备进口运输协议模板
- 申请撤销合同申请书
- 2025至2030年男式PVC/皮革手套项目投资价值分析报告
- 2025至2030年中国不锈钢二层挂架数据监测研究报告
- 2025至2030年中国ERP系统软件数据监测研究报告
- 2025年中国电热镊子市场调查研究报告
- 2025至2030年不干胶项目投资价值分析报告
- 《电子商务法律法规》电子商务专业全套教学课件
- 全套教学课件《工程伦理学》
- JJG 976-2024透射式烟度计
- 清华大学考生自述
- 小学生读书卡模板
- 《现代汉语词汇》PPT课件(完整版)
- 生理学教学大纲
- 环保铁1215物质安全资料表MSDS
- “君子教育”特色课程的探索
- AS9100D人力资源管理程序(范本)
- 《人为什么会生病》PPT课件
评论
0/150
提交评论