![THKKL-6型实验指导书_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/95a6c1c2-a7b3-453f-b023-69013fac12dc/95a6c1c2-a7b3-453f-b023-69013fac12dc1.gif)
![THKKL-6型实验指导书_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/95a6c1c2-a7b3-453f-b023-69013fac12dc/95a6c1c2-a7b3-453f-b023-69013fac12dc2.gif)
![THKKL-6型实验指导书_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/95a6c1c2-a7b3-453f-b023-69013fac12dc/95a6c1c2-a7b3-453f-b023-69013fac12dc3.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-6目 录第一局部 THKKL-6型使用说明书1第一章 系统概述1第二章 硬件的组成及使用2第二局部 THKKL-6型实验指导书5第一章 控制理论实验5实验一 典型环节的电路模拟5实验二 二阶系统的瞬态响应12实验三 高阶系统的瞬态响应和稳定性分析15实验四 线性定常系统的稳态误差17实验五 典型环节和系统频率特性的测量22实验六 线性定常系统的串联校正28实验七 典型非线性环节的静态特性35实验八 非线性系统的描述函数法40实验九 非线性系统的相平面分析法47实验十 系统能控性与能观性分析53实验十一 控制系统极点的任意配置56实验十二 具有部模型的状态反响控制系统62实验十三 采样控制系统
2、的分析68实验十四 采样控制系统的动态校正71第二章 计算机控制技术根底实验74实验一 A/D与D/A转换74实验二 数字滤波器76实验三 离散化方法研究78实验四 数字PID调节器算法的研究83实验五 串级控制算法的研究87实验六 解耦控制算法的研究90实验七 最少拍控制算法研究94实验八 具有纯滞后系统的大林控制98实验九 线性离散系统的全状态反响控制101实验十 模糊控制系统104实验十一 具有单神经元控制器的控制系统108实验十二 二次型状态调节器112实验十三 单闭环直流调速系统115实验十四 步进电机转速控制系统118实验十五 单闭环温度恒值控制系统120实验十六 THBDZ-1型
3、 电机转速控制实验.实验十七 单容水箱液位定值控制系统.附 录 上位机软件使用流程122. z-第一局部 使用说明书第一章 系统概述"THKKL-6”型控制理论及计算机控制技术实验箱是我公司结合教学和实践的需要而进展精心设计的实验系统。适用于高校的控制原理、计算机控制技术等课程的实验教学。该实验箱具有实验功能全、资源丰富、使用灵活、接线可靠、操作快捷、维护简单等优点。 实验箱的硬件局部主要由直流稳压电源、低频信号发生器、阶跃信号发生器、交/直流数字电压表、电阻测量单元、示波器接口、CPU51单片机模块、单片机接口、步进电机单元、直流电机单元、温度控制单元、通用单元电路、电位器组等单元
4、组成。数据采集局部采用USB2.0接口,它可直接插在IBM-PC/AT 或与之兼容的计算机USB通讯口上,有4路单端A/D模拟量输入,转换精度为12位;2路D/A模拟量输出,转换精度为12位;上位机软件则集中了虚拟示波器、信号发生器、Bode图等多种功能于一体。在实验设计上,控制理论既有模拟局部的实验,又有离散局部实验;既有经典控制理论实验,又有现代控制理论实验;计算机控制系统除了常规的实验外,还增加了当前工业上应用广泛、效果卓著的模糊控制、神经元控制、二次型最优控制等实验;第二章 硬件的组成及使用一、直流稳压电源直流稳压电源主要用于给实验箱提供电源。有+5V/0.5A、±15V/0
5、.5A及+24V/2.0A四路,每路均有短路保护自恢复功能。它们的开关分别由相关的钮子开关控制,并由相应发光二极管指示。其中+24V主要用于温度控制单元。实验前,启动实验箱左侧的电源总开关。并根据需要将+5V、±15V、+24V钮子开关拔到"开的位置。实验时,通过2号连接导线将直流电压接到需要的位置。二、低频信号发生器低频信号发生器主要输出有正弦信号、方波信号、斜坡信号和抛物线信号四种波形信号。输出频率由上位机设置,频率围0.1 Hz 100Hz。可以通过幅度调节电位器来调节各个波形的幅度,而斜坡和抛物波信号还可以通过斜率调节电位器来改变波形的斜率。三、锁零按钮锁零按钮用于
6、实验前运放单元中电容器的放电。使用时用二号实验导线将对应的接线柱与运放的输出端连接。当按下按钮时,通用单元中的场效应管处于短路状态,电容器放电,让电容器两端的初始电压为0V;当按钮复位时,单元中的场效应管处于开路状态,此时可以开场实验。四、阶跃信号发生器阶跃信号发生器主要提供实验时的阶跃给定信号,其输出电压围约为-15V+15V,正负档连续可调。使用时根据需要可选择正输出或负输出,具体通过"阶跃信号发生器单元的钮子开关来实现。当按下自锁按钮时,单元的输出端输出一个可调的阶跃信号(当输出电压为1V时,即为单位阶跃信号),实验开场;当按钮复位时,单元的输出端输出电压为0V。注:单元的输出
7、电压可通过实验箱上的直流数字电压表来进展测量。五、电阻测量单元可以通过输出的电压值来得到未知的电阻值,本单元可以在实验时方便地设置电位器的阻值。当钮子开关拨到×10K位置时,所测量的电阻值等于输出的电压值乘以10,单位为千欧。当钮子开关拨到×100K位置时,所测量的电阻值等于输出的电压值乘以100,单位为千欧。注:为了得到一个较准确的电阻值,应该选择适当的档位,尽量保证输出的电压与1V更接近。六、交/直流数字电压表交/直流数字电压表有三个量程,分别为200mV、2V、20V。当自锁开关不按下时,它作直流电压表使用,这时可用于测量直流电压;当自锁开关按下时,作交流毫伏表使用,
8、它具有频带宽10Hz400KHz、精度高1K Hz时:±5和真有效值测量的特点,即使测量窄脉冲信号,也能测得其准确的有效值,其适用的波峰因数围可到达10。七、通用单元电路通用单元电路具体有"通用单元1"通用单元6、"反相器单元和"系统能控性与能观性分析等单元。这些单元主要由运放、电容、电阻、电位器和一些自由布线区等组成。通过不同的接线,可以模拟各种受控对象的数学模型,主要用于比例、积分、微分、惯性等电路环节的构造。一般为反向端输入,其中电阻多为常用阻值51K、100K、200K、510K;电容多在反响端,容值为0.1uF、1uF、10uF。以组
9、建积分环节为例,积分环节的时间常数为1s。首先确定带运放的单元,且其前后的元器件分别为100K、10uFT=100K×10uF=1s,通过观察"通用单元1可满足要求,然后将100K和10uF通过实验导线连接起来。实验前先按下"锁零按钮对电容放电,然后用2号导线将单位阶跃信号输出端接到积分单元的输入端,积分电路的输出端接至反向器单元,保证输入、输出方向的一致性。然后按下"锁零按钮和阶跃信号输出按钮,用示波器观察输出曲线,其具体电路如以下图所示。八、非线性单元由一个含有两个单向二极管并且需要外加±15V直流电源,可研究非线性环节的静态特性和非线性系
10、统。其中10K电位器由电位器组单元提供。电位器的使用可由2号导线将电位器引出端点接入至相应电路中。但在实验前先断开电位器与电路的连线,用万用表测量好所需R的阻值,然后再接入电路中。九、采样保持器它采用"采样-保持器组件LF398,具有将连续信号离散后再由零阶保持器输出的功能,其采样频率由外接的方波信号频率决定。使用时只要接入外部的方波信号及输入信号即可。十、单片机控制单元主要用于计算机控制实验局部,其作用为计算机控制算法的执行。主要由单片机AT89S52、AD采集AD7323,四路12位,电压围:-10V+10V和DA输出LTC1446,两路12位,电压围:-10V+10V三局部组成
11、。发光二极管可显示AD转换结果由具体程序而定。十一、实物实验单元包括温度控制单元、直流电机单元和步进电机单元,主要用于计算机控制技术实验中,使用方法详见实验指导书。十二、数据采集卡采用ADUC7021和CY68013芯片组成,支持4路AD-10V+10V采集,两路DA-10V+10V输出。采样频率为40K,转换精度为12位,配合上位机可进展常规信号采集显示、模拟量输出、频率特性分析等功能。考前须知:1每次连接线路前要关闭电源总开关。2按照实验指导书连接好线路后,仔细检查线路是否连接正确、电源有无接反。如确认无误前方可接通电源开场实验。第二局部 实验指导书第一章 控制理论实验实验一 典型环节的电
12、路模拟一、实验目的1熟悉THKKL-6型 控制理论及计算机控制技术实验箱及"THKKL-6”软件的使用;2熟悉各典型环节的阶跃响应特性及其电路模拟;3测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。二、实验设备1THKKL-6型 控制理论及计算机控制技术实验箱;2PC机一台(含"THKKL-6”软件);3USB接口线;三、实验容1设计并组建各典型环节的模拟电路;2测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。熟悉这些典型环节的构造及其对阶跃输入的响应,将对系统的设计和分析
13、十分有益。本实验中的典型环节都是以运放为核心元件构成,其原理框图如图1-1所示。图中Z1和Z2表示由R、C构成的复数阻抗。图1-1 典型环节的原理框图1 比例P环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。它的传递函数与方框图分别为:当Ui(S)输入端输入一个单位阶跃信号,且比例系数为K时的响应曲线如图1-2所示。图1-2 比例环节的响应曲线2积分I环节 积分环节的输出量与其输入量对时间的积分成正比。它的传递函数与方框图分别为:设Ui(S)为一单位阶跃信号,当积分系数为T时的响应曲线如图1-3所示。图1-3 积分环节的响应曲线3比例积分(PI)环节比例积分环节的传递函数与
14、方框图分别为:其中T=R2C,K=R2/R1设Ui(S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T时的PI输出响应曲线。图1-4 比例积分环节的响应曲线4比例微分(PD)环节比例微分环节的传递函数与方框图分别为: 其中设Ui(S)为一单位阶跃信号,图1-5示出了比例系数(K)为2、微分系数为T时PD的输出响应曲线。图1-5 比例微分环节的响应曲线5比例积分微分(PID)环节比例积分微分(PID)环节的传递函数与方框图分别为:其中,设Ui(S)为一单位阶跃信号,图1-6示出了比例系数(K)为1、微分系数为TD、积分系数为TI时PID的输出。图1-6 PID环节的响应曲线6惯
15、性环节惯性环节的传递函数与方框图分别为:当Ui(S)输入端输入一个单位阶跃信号,且放大系数(K)为1、时间常数为T时响应曲线如图1-7所示。图1-7 惯性环节的响应曲线五、实验步骤1比例P环节根据比例环节的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图1-8所示。图1-8 比例环节的模拟电路图中后一个单元为反相器,其中R0=200K。假设比例系数K=1时,电路中的参数取:R1=100K,R2=100K。假设比例系数K=2时,电路中的参数取:R1=100K,R2=200K。当ui为一单位阶跃信号时,用"THKKL-6软件观测并记录相应K值时的实验曲线,并与理论值进展比
16、拟。另外R2还可使用可变电位器,以实现比例系数为任意的设定值。注: 实验中注意"锁零按钮和"阶跃按键的使用,实验时应先弹出"锁零按钮,然后按下"阶跃按键,具体请参考第一局部"硬件的组成及使用相关局部; 为了更好的观测实验曲线,实验时可适当调节软件上的时间轴刻度,以下实验一样。2积分I环节根据积分环节的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图1-9所示。图1-9 积分环节的模拟电路图中后一个单元为反相器,其中R0=200K。假设积分时间常数T=1s时,电路中的参数取:R=100K,C=10uF(T=RC=100K×
17、;10uF=1s);假设积分时间常数T=0.1s时,电路中的参数取:R=100K,C=1uF(T=RC=100K×1uF=0.1s);当ui为单位阶跃信号时,用"THKKL-6软件观测并记录相应T值时的输出响应曲线,并与理论值进展比拟。注:由于实验电路中有积分环节,实验前一定要用"锁零单元对积分电容进展锁零。3比例积分(PI)环节根据比例积分环节的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图1-10所示。图1-10 比例积分环节的模拟电路图中后一个单元为反相器,其中R0=200K。假设取比例系数K=1、积分时间常数T=1s时,电路中的参数取:R
18、1=100K,R2=100K,C=10uF(K= R2/ R1=1,T=R2C=100K×10uF=1s);假设取比例系数K=1、积分时间常数T=0.1s时,电路中的参数取:R1=100K,R2=100K,C=1uF(K= R2/ R1=1,T=R2C=100K×1uF=0.1s)。注:通过改变R2、R1、C的值可改变比例积分环节的放大系数K和积分时间常数T。当ui为单位阶跃信号时,用"THKKL-6软件观测并记录不同K及T值时的实验曲线,并与理论值进展比拟。4比例微分(PD)环节根据比例微分环节的方框图,选择实验箱上的通用电路单元设计并组建其模拟电路,如图1-1
19、1所示。图1-11 比例微分环节的模拟电路图中后一个单元为反相器,其中R0=200K。假设比例系数K=1、微分时间常数T=0.1s时,电路中的参数取:R1=100K,R2=100K,C=1uF(K= R2/ R1=1,T=R1C=100K×1uF=0.1s);假设比例系数K=1、微分时间常数T=1s时,电路中的参数取:R1=100K,R2=100K,C=10uF(K= R2/ R1=1,T=R1C=100K×10uF=1s);当ui为一单位阶跃信号时,用"THKKL-6软件观测并记录不同K及T值时的实验曲线,并与理论值进展比拟。5比例积分微分(PID)环节根据比例
20、积分微分环节的方框图,选择实验箱上的通用电路单元设计并组建其相应的模拟电路,如图1-12所示。图1-12 比例积分微分环节的模拟电路图中后一个单元为反相器,其中R0=200K。假设比例系数K=2、积分时间常数TI =0.1s、微分时间常数TD =0.1s时,电路中的参数取:R1=100K,R2=100K,C1=1uF、C2=1uF (K= (R1 C1+ R2 C2)/ R1 C2=2,TI=R1C2=100K×1uF=0.1s,TD=R2C1=100K×1uF=0.1s);假设比例系数K=1.1、积分时间常数TI =1s、微分时间常数TD =0.1s时,电路中的参数取:R
21、1=100K,R2=100K,C1=1uF、C2=10uF (K= (R1 C1+ R2 C2)/ R1 C2=1.1,TI=R1C2=100K×10uF=1s,TD=R2C1=100K×1uF=0.1s);当ui为一单位阶跃信号时,用"THKKL-6软件观测并记录不同K、TI、TD值时的实验曲线,并与理论值进展比拟。6惯性环节根据惯性环节的方框图,选择实验箱上的通用电路单元设计并组建其相应的模拟电路,如图1-13所示。图1-13 惯性环节的模拟电路图中后一个单元为反相器,其中R0=200K。假设比例系数K=1、时间常数T=1s时,电路中的参数取:R1=100K,
22、R2=100K,C=10uF(K= R2/ R1=1,T=R2C=100K×10uF=1s)。假设比例系数K=1、时间常数T=0.1s时,电路中的参数取:R1=100K,R2=100K,C=1uF(K= R2/ R1=1,T=R2C=100K×1uF=0.1s)。通过改变R2、R1、C的值可改变惯性环节的放大系数K和时间常数T。当ui为一单位阶跃信号时,用"THKKL-6软件观测并记录不同K及T值时的实验曲线,并与理论值进展比拟。7根据实验时存储的波形及记录的实验数据完成实验报告。六、实验报告要求1画出各典型环节的实验电路图,并注明参数。2写出各典型环节的传递函数
23、。3根据测得的典型环节单位阶跃响应曲线,分析参数变化对动态特性的影响。七、实验思考题1用运放模拟典型环节时,其传递函数是在什么假设条件下近似导出的.2积分环节和惯性环节主要差异是什么.在什么条件下,惯性环节可以近似地视为积分环节.而又在什么条件下,惯性环节可以近似地视为比例环节.3在积分环节和惯性环节实验中,如何根据单位阶跃响应曲线的波形,确定积分环节和惯性环节的时间常数.4为什么实验中实际曲线与理论曲线有一定误差.5为什么PD实验在稳定状态时曲线有小围的振荡.实验二 二阶系统的瞬态响应一、实验目的1通过实验了解参数 (阻尼比)、(阻尼自然频率)的变化对二阶系统动态性能的影响;2掌握二阶系统动
24、态性能的测试方法。二、实验设备1THKKL-6型 控制理论及计算机控制技术实验箱;2PC机一台(含"THKKL-6”软件);3USB接口线;三、实验容1观测二阶系统的阻尼比分别在0<<1,=1和>1三种情况下的单位阶跃响应曲线;2调节二阶系统的开环增益K,使系统的阻尼比,测量此时系统的超调量、调节时间 (= ±0.05);3为一定时,观测系统在不同时的响应曲线。四、实验原理1二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为 (2-1)闭环特征方程:其解 ,针对不同的值,特征根会出现以下三种情况:10<<1欠
25、阻尼,此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。它的数学表达式为:式中,。2临界阻尼此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。3过阻尼,此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。 (a) 欠阻尼(0<<1) (b)临界阻尼() (c)过阻尼()图2-1 二阶系统的动态响应曲线虽然当=1或>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取=0.60.7,此时系统的动态响应过程不仅快速,而且超调量也小。2二阶系统的典型构造典型的二阶系统构造
26、方框图和模拟电路图如2-2、如2-3所示。图2-2 二阶系统的方框图图2-3 二阶系统的模拟电路图电路参考单元为:通用单元1、通用单元2、通用单元3、反相器单元、电位器组由图2-2可得其开环传递函数为: ,其中:, (,)其闭环传递函数为: 与式2-1相比拟,可得,五、实验步骤根据图2-3,选择实验箱上的通用电路单元设计并组建模拟电路。1值一定时,图2-3中取C=1uF,R=100K(此时),R*阻值可调围为0470K。系统输入一单位阶跃信号,在以下几种情况下,用"THKKL-6”软件观测并记录不同值时的实验曲线。1.1 当可调电位器R*=250K时,=0.2,系统处于欠阻尼状态,其
27、超调量为53%左右;1.2 假设可调电位器R*=70.7K时,=0.707,系统处于欠阻尼状态,其超调量为4.3%左右;1.3 假设可调电位器R*=50K时,=1,系统处于临界阻尼状态;1.4 假设可调电位器R*=25K时,=2,系统处于过阻尼状态。2值一定时,图2-4中取R=100K,R*=250K(此时=0.2)。系统输入一单位阶跃信号,在以下几种情况下,用"THKKL-6”软件观测并记录不同值时的实验曲线。2.1 假设取C=10uF时,2.2 假设取C=0.1uF可从无源元件单元中取时,注:由于实验电路中有积分环节,实验前一定要用"锁零单元对积分电容进展锁零。六、实验
28、报告要求1画出二阶系统线性定常系统的实验电路,并写出闭环传递函数,说明电路中的各参数;2根据测得系统的单位阶跃响应曲线,分析开环增益K和时间常数T对系统的动态性能的影响。七、实验思考题1如果阶跃输入信号的幅值过大,会在实验中产生什么后果.2在电路模拟系统中,如何实现负反响和单位负反响.3为什么本实验中二阶系统对阶跃输入信号的稳态误差为零.实验三 高阶系统的瞬态响应和稳定性分析一、实验目的1通过实验,进一步理解线性系统的稳定性仅取决于系统本身的构造和参数,与外作用及初始条件均无关的特性;2研究系统的开环增益K或其它参数的变化对闭环系统稳定性的影响。二、实验设备1THKKL-6型 控制理论及计算机
29、控制技术实验箱;2PC机一台(含"THKKL-6”软件);3USB接口线;三、实验容观测三阶系统的开环增益K为不同数值时的阶跃响应曲线。四、实验原理三阶系统及三阶以上的系统统称为高阶系统。一个高阶系统的瞬态响应是由一阶和二阶系统的瞬态响应组成。控制系统能投入实际应用必须首先满足稳定的要求。线性系统稳定的充要条件是其特征方程式的根全部位于S平面的左方。应用劳斯判据就可以判别闭环特征方程式的根在S平面上的具体分布,从而确定系统是否稳定。本实验是研究一个三阶系统的稳定性与其参数对系统性能的关系。三阶系统的方框图和模拟电路图如图3-1、图3-2所示。图3-1 三阶系统的方框图 图3-2 三阶
30、系统的模拟电路图电路参考单元为:通用单元1、通用单元2、通用单元3、通用单元4、反相器单元、电位器组系统开环传递函数为:式中=1s,其中待定电阻R*的单位为k,改变R*的阻值,可改变系统的放大系数K。由开环传递函数得到系统的特征方程为:由劳斯判据得:0<K<12 系统稳定K12 系统临界稳定K>12 系统不稳定其三种状态的不同响应曲线如图3-3的a)、b)、c)所示。a) 不稳定 b) 临界 c)稳定图3-3三阶系统在不同放大系数的单位阶跃响应曲线五、实验步骤根据图3-2所示的三阶系统的模拟电路图,组建该系统的模拟电路。当系统输入一单位阶跃信号时,在以下几种情况下,用上位软件
31、观测并记录不同K值时的实验曲线。1假设K=5时,系统稳定,此时电路中的R*取100K左右;2假设K=12时,系统处于临界状态,此时电路中的R*取42.5K左右(实际值为47K左右);3假设K=20时,系统不稳定,此时电路中的R*取25K左右。六、实验报告要求1画出三阶系统线性定常系统的实验电路,并写出其闭环传递函数,说明电路中的各参数。2根据测得的系统单位阶跃响应曲线,分析开环增益对系统动态特性及稳定性的影响。七、实验思考题对三阶系统,为使系统能稳定工作,开环增益K应适量取大还是取小.实验四 线性定常系统的稳态误差一、实验目的1通过本实验,理解系统的跟踪误差与其构造、参数与输入信号的形式、幅值
32、大小之间的关系;2研究系统的开环增益K对稳态误差的影响。二、实验设备1THKKL-6型 控制理论及计算机控制技术实验箱;2PC机一台(含"THKKL-6”软件);3USB接口线;三、实验容1观测0型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;2观测I型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;3观测II型二阶系统的单位斜坡响应和单位抛物波响应,并实测它们的稳态误差。四、实验原理控制系统的方框图如图4-1所示。其中G(S)为系统前向通道的传递函数,H(S)为其反响通道的传递函数。图4-1 控制系统的方框图由图4-1求得1由上式可知,系统的误差E(S)不
33、仅与其构造和参数有关,而且也与输入信号R(S)的形式和大小有关。如果系统稳定,且误差的终值存在,则可用以下的终值定理求取系统的稳态误差:2本实验就是研究系统的稳态误差与上述因素间的关系。下面表达0型、I型、II型系统对三种不同输入信号所产生的稳态误差。10型二阶系统设0型二阶系统的方框图如图4-2所示。根据式2,可以计算出该系统对阶跃和斜坡输入时的稳态误差:图4-2 0型二阶系统的方框图1) 单位阶跃输入2) 单位斜坡输入上述结果说明0型系统只能跟踪阶跃输入,但有稳态误差存在,其计算公式为:其中,R0为阶跃信号的幅值。其理论曲线如图4-3(a)和(b)所示。 (a) (b)图4-3 0型二阶系
34、统稳态误差响应曲线2I型二阶系统设图4-4为I型二阶系统的方框图。图4-4 I型二阶系统方框图1) 单位阶跃输入2) 单位斜坡输入这说明I型系统的输出信号完全能跟踪阶跃输入信号,在稳态时其误差为零。对于单位斜坡信号输入,该系统的输出也能跟踪输入信号的变化,且在稳态时两者的速度相等即,但有位置误差存在,其值为,其中,为斜坡信号对时间的变化率。其理论曲线如图4-5(a)和图4-5(b)所示。(a) (b)图4-5 I型二阶系统稳态误差响应曲线3II型二阶系统设图4-6为II型二阶系统的方框图。图4-6 II型二阶系统方框图同理可证明这种类型的系统输出均无稳态误差地跟踪单位阶跃输入和单位斜坡输入。当
35、输入信号,即时,其稳态误差为:当单位抛物波输入时II型二阶系统的理论稳态偏差曲线如图4-7所示。图4-7 II型二阶系统的抛物波稳态误差响应曲线五、实验步骤10型二阶系统根据0型二阶系统的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图4-8所示。图4-8 0型二阶系统模拟电路图电路参考单元为:通用单元1、通用单元2、通用单元3、反相器单元当输入ur为一单位阶跃信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进展比拟。当输入ur为一单位斜坡信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进展比拟。注:在上位机上输出0.1Hz的信号,将实验箱信号发生器
36、单元调到斜波抛物波输出,调节斜率电位器,使波形输出需要的斜坡抛物波。2型二阶系统根据I型二阶系统的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图4-9所示。图4-9 型二阶系统模拟电路图电路参考单元为:通用单元1、通用单元2、通用单元3、反相器单元当输入ur为一单位阶跃信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进展比拟。当输入ur为一单位斜坡信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进展比拟。3II型二阶系统根据II型二阶系统的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图4-10所示。图4-10 II型二阶系统模拟电
37、路图电路参考单元为:通用单元1、通用单元2、通用单元3、通用单元4、反相器单元当输入ur为一单位斜坡(或单位阶跃)信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进展比拟。当输入ur为一单位单位抛物波信号时,用上位软件观测图中e点并记录其实验曲线,并与理论偏差值进展比拟。注:本实验中不主用示波器直接测量给定信号与响应信号的曲线,因它们在时间上有一定的响应误差;六、实验报告要求1画出0型二阶系统的方框图和模拟电路图,并由实验测得系统在单位阶跃和单位斜坡信号输入时的稳态误差。2画出型二阶系统的方框图和模拟电路图,并由实验测得系统在单位阶跃和单位斜坡信号输入时的稳态误差。3画出型二阶系
38、统的方框图和模拟电路图,并由实验测得系统在单位斜坡和单位抛物线函数作用下的稳态误差。4观察由于改变输入阶跃信号的幅值、斜坡信号的速度,对二阶系统稳态误差的影响。并分析其产生的原因。七、实验思考题1为什么0型系统不能跟踪斜坡输入信号.2为什么0型系统在阶跃信号输入时一定有误差存在,决定误差的因素有哪些.3为使系统的稳态误差减小,系统的开环增益应取大些还是小些.4解释系统的动态性能和稳态精度对开环增益K的要相矛盾的,在控制工程中应如何解决这对矛盾.实验五 典型环节和系统频率特性的测量一、实验目的1了解典型环节和系统的频率特性曲线的测试方法;2根据实验求得的频率特性曲线求取传递函数。二、实验设备1T
39、HKKL-6型 控制理论及计算机控制技术实验箱;2PC机一台(含"THKKL-6”软件);3USB接口线;三、实验容1惯性环节的频率特性测试;2二阶系统频率特性测试;3由实验测得的频率特性曲线,求取相应的传递函数;4用软件仿真的方法,求取惯性环节和二阶系统的频率特性。四、实验原理1系统环节的频率特性设G(S)为一最小相位系统环节的传递函数。如在它的输入端施加一幅值为、频率为的正弦信号,则系统的稳态输出为由式得出系统输出,输入信号的幅值比相位差 (幅频特性) (相频特性)式中和都是输入信号的函数。2频率特性的测试方法2.1 沙育图形法测试幅频特性的测试 由于 改变输入信号的频率,即可测
40、出相应的幅值比,并计算 dB其测试框图如下所示:图5-1 幅频特性的测试图(沙育图形法)注:示波器同一时刻只输入一个通道,即系统环节的输入或输出。相频特性的测试图5-2 幅频特性的测试图(沙育图形法)令系统环节的输入信号为: (5-1)则其输出为 (5-2)对应的沙育图形如图5-2所示。假设以t为参变量,则与所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,由式(5-2)得于是有 (5-3)同理可得 (5-4)其中为椭圆与Y轴相交点间的长度;为椭圆与*轴相交点间的长度。式(5-3)、(5-4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位的计算公式变为:或
41、 下表列出了超前与滞后时相位的计算公式和光点的转向。相角j超前滞后0° 90°90° 180°0° 90°90° 180°图形计算公式j=Sin-12Y0/(2Ym)=Sin-12*0/(2*m)j=180°-Sin-12Y0/(2Ym)=180°-Sin-12*0/(2*m)j=Sin-12Y0/(2Ym)=Sin-12*0/(2*m)j=180°-Sin-12Y0/(2Ym)=180°-Sin-12*0/(2*m)光点转向顺时针顺时针逆时针逆时针2.2 用虚拟示波器测试
42、图5-3用虚拟示波器测试系统(环节)的频率特性可直接用软件测试出系统(环节)的频率特性,其中Ui信号由虚拟示波器扫频输出直接点击开场分析即可产生,并由信号发生器1开关拨至正弦波输出。测量频率特性时,信号发生器1的输出信号接到被测环节或系统的输入端和示波器接口的通道1。被测环节或系统的输出信号接示波器接口的通道2。3惯性环节传递函数和电路图为图5-4 惯性环节的电路图其幅频的近似图如图5-5所示。图5-5 惯性环节的幅频特性假设图5-4中取C=1uF,R1=100K,R2=100K, R0=200K则系统的转折频率为=1.66Hz4二阶系统由图5-6(R*=100K)可得系统的传递函数和方框图为
43、:,过阻尼图5-6 典型二阶系统的方框图其模拟电路图为图5-7 典型二阶系统的电路图其中R*可调。这里可取100K、10K两个典型值。当 R*=100K时的幅频近似图如图5-8所示。 图5-8 典型二阶系统的幅频特性五、实验步骤1惯性环节1.1 根据图5-11 惯性环节的电路图,选择实验箱上的通用电路单元设计并组建相应的模拟电路。其中电路的输入端接信号源的输出端,电路的输出端接示波器接口单元的通道2输入端;同时将信号源的输出端接示波器接口单元的通道1输入端。图5-11 惯性环节的电路图1.2 设置终止频率为100rad/s。1.3 点击软件的"开场分析,既完成波特图的幅频特性及相频特
44、性图;注:信号源的幅度调至最大。2二阶系统根据图5-7所示二阶系统的电路图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图5-12所示。图5-12 典型二阶系统的电路图电路参考单元为:通用单元2、通用单元3、反相器单元、电位器组2.1 当时,设置终止频率为20rad/s。具体步骤请参考惯性环节的相关操作。2.2当时,设置终止频率为20rad/s。具体步骤请参考惯性环节的相关操作。注:当时,信号源的幅度调至最大。当时,信号源的幅度调至10Vp-p。六、实验报告要求1写出被测环节和系统的传递函数,并画出相应的模拟电路图;2把实验测得的数据和理论计算数据列表,绘出它们的Bode图;3用上位
45、机实验时,根据由实验测得二阶系统闭环幅频特性曲线,据此写出该系统的传递函数,并把计算所得的谐振峰值和谐振频率与实验结果相比拟;4绘出被测环节和系统的幅频特性与相频特性曲线。七、实验思考题1用示波器测试相频特性时,假设把信号发生器的正弦信号送入Y轴,被测系统的输出信号送至*轴,则根据椭圆光点的转动方向,如何确定相位的超前和滞后.2根据上位机测得的Bode图的幅频特性,就能确定系统或环节的相频特性,试问这在什么系统时才能实现.实验六 线性定常系统的串联校正一、实验目的1通过实验,理解所加校正装置的构造、特性和对系统性能的影响;2掌握串联校正几种常用的设计方法和对系统的实时调试技术。二、实验设备1T
46、HKKL-6型 控制理论及计算机控制技术实验箱;2PC机一台(含"THKKL-6”软件);3USB接口线;三、实验容 1观测未加校正装置时系统的动、静态性能;2按动态性能的要求,分别用时域法或频域法期望特性设计串联校正装置;3观测引入校正装置后系统的动、静态性能,并予以实时调试,使之动、静态性能均满足设计要求;4利用上位机软件,分别对校正前和校正后的系统进展仿真,并与上述模拟系统实验的结果相比拟。四、实验原理图6-1为一加串联校正后系统的方框图。图中校正装置Gc(S)是与被控对象Go(S)串联连接。图6-1 加串联校正后系统的方框图串联校正有以下三种形式: 1) 超前校正,这种校正是
47、利用超前校正装置的相位超前特性来改善系统的动态性能。2) 滞后校正,这种校正是利用滞后校正装置的高频幅值衰减特性,使系统在满足稳态性能的前提下又能满足其动态性能的要求。3) 滞后超前校正,由于这种校正既有超前校正的特点,又有滞后校正的优点。因而它适用系统需要同时改善稳态和动态性能的场合。校正装置有无源和有源二种。基于后者与被控对象相连接时,不存在着负载效应,故得到广泛地应用。下面介绍两种常用的校正方法:零极点对消法时域法;采用超前校正和期望特性校正法采用滞后校正。1零极点对消法(时域法)所谓零极点对消法就是使校正变量Gc(S)中的零点抵消被控对象Go(S)中不希望的极点,以使系统的动、静态性能
48、均能满足设计要求。设校正前系统的方框图如图6-2所示。图6-2 二阶闭环系统的方框图1.1 性能要求静态速度误差系数:,超调量:;上升时间:。1.2 校正前系统的性能分析校正前系统的开环传递函数为:误差系数为:,刚好满足稳态的要求。根据系统的闭环传递函数系统的速度:求得,代入二阶系统超调量的计算公式,即可确定该系统的超调量,即,这说明当系统满足稳态性能指标KV的要求后,其动态性能距设计要求甚远。为此,必须在系统中加一适宜的校正装置,以使校正后系统的性能同时满足稳态和动态性能指标的要求。1.3 校正装置的设计根据对校正后系统的性能指标要求,确定系统的和。即由,求得,解得根据零极点对消法则,令校正
49、装置的传递函数则校正后系统的开环传递函数为:相应的闭环传递函数于是有:,为使校正后系统的超调量,这里取 , 则 ,。这样所求校正装置的传递函数为:设校正装置GC(S)的模拟电路如图6-3或图6-4(实验时可选其中一种)所示。图6-3校正装置的电路图1 图6-4校正装置的电路图2其中图6-3中 时 则有而图6-4中,时有图6-5 (a)、(b)分别为二阶系统校正前、后系统的单位阶跃响应的示意曲线。 (a) (约为63%) (b) (约为16.3%)图6-5 加校正装置前后二阶系统的阶跃响应曲线2期望特性校正法根据图6-1和给定的性能指标,确定期望的开环对数幅频特性L(),并令它等于校正装置的对数
50、幅频特性Lc()和未校正系统开环对数幅频特性Lo()之和,即 L()= Lc()+ Lo()当知道期望开环对数幅频特性L()和未校正系统的开环幅频特性L0(),就可以从Bode图上求出校正装置的对数幅频特性 Lc()= L()-Lo()据此,可确定校正装置的传递函数,具体说明如下:设校正前系统为图6-6所示,这是一个0型二阶系统。图6-6二阶系统的方框图其开环传递函数为:,其中 ,。则相应的模拟电路如图6-7所示。图6-7 二阶系统的模拟电路图由于图6-7是一个0型二阶系统,当系统输入端输入一个单位阶跃信号时,系统会有一定的稳态误差,其误差的计算方法请参考实验四"线性定常系统的稳态误
51、差。2.1 设校正后系统的性能指标如下:系统的超调量:,速度误差系数。后者表示校正后的系统为I型二阶系统,使它跟踪阶跃输入无稳态误差。 2.2 设计步骤 绘制未校正系统的开环对数幅频特性曲线,由图6-6可得:其对数幅频特性曲线如图6-8的曲线(虚线) 所示。 根据对校正后系统性能指标的要求,取,相应的开环传递函数为:,其频率特性为: 据此作出曲线,如图6-8的曲线L所示。 求因为。所以由上式表示校正装置是PI调节器,它的模拟电路图如图6-9所示。图6-8 二阶系统校正前、校正后的幅频特性曲线 图6-9 PI校正装置的电路图由于 其中取R1=80K实际电路中取82K,R2=100K,C=10uF
52、,则,校正后系统的方框图如图6-10所示。图6-10 二阶系统校正后的方框图图6-11 (a)、(b)分别为二阶系统校正前、后系统的单位阶跃响应的示意曲线。 (a) (稳态误差为0.33) (b) (约为4.3%)图6-11 加校正装置前后二阶系统的阶跃响应曲线五、实验步骤1零极点对消法(时域法)进展串联校正1.1 校正前根据图6-2二阶系统的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图6-12所示。图6-12 二阶闭环系统的模拟电路图(时域法)电路参考单元为:通用单元1、通用单元3、通用单元2、反相器单元在r输入端输入一个单位阶跃信号,用上位机软件观测并记录相应的实验曲线
53、,并与理论值进展比拟。1.2 校正后在图6-12的根底上加上一个串联校正装置(见图6-3),如图6-13所示。图6-13二阶闭环系统校正后的模拟电路图(时域法)电路参考单元为:通用单元1、通用单元6、通用单元3、通用单元2、反相器单元 其中。在系统输入端输入一个单位阶跃信号,用上位机软件观测并记录相应的实验曲线,并与理论值进展比拟,观测是否满足设计要求。注:做本实验时,也可选择图6-4中对应的校正装置,此时校正装置装置使用通用单元5、通用单元1,但510K和390K电阻需在无源元件单元取。2期望特性校正法2.1 校正前根据图6-6二阶系统的方框图,选择实验箱上的通用电路单元设计并组建相应的模拟电路,如图6-14所示。图6-14 二阶闭环系统的模拟电路图(频域法)电路参考单元为:通用单元1、通用单元3、通用单元2、反相器单元在系统输入端输入一个单位阶跃信号,用上位机软件观测并记录相应的实验曲线,并与理论值进展比拟。2.2 校正后在图6-14的根底上加上一个串联校正装置(见图6-9),校正后的系统如图6-15所示。图6-15二阶闭环系统校正后的模拟电路图(频域法)注:80K电阻在实际电路中阻值可取82K。电路参考单元为:通用单元1、通用单元6、通用单元3、通用单元2、反相器单元在系统输入端输入一个单位阶跃信号,用上位机软件观测并记录相应的实验曲线,并与理论值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《马氏体转变》课件
- 2025年成都货运从业资格证考试试卷题库
- 探索奥秘:运动与力
- 商标注册申请书范本
- 如何培养新生儿颅脑疾病的超声诊断思维-进修医师带教体会
- 2024-2025人教版初中七下数学湖北专版10.3第3课时 图文信息问题与行程问题【课件】
- 2024-2025人教版初中七下数学湖北专版8.1第1课时-平方根【课件】
- 关于冬季精装施工方案
- 公路墩柱安全爬梯施工方案
- 东营适合大学生的创业项目投资小
- 2024年云南省公务员考试《行测》真题及答案解析
- 2024-2025学年广东省大湾区40校高二上学期联考英语试题(含解析)
- 旅拍店两人合作协议书范文
- 楚辞离骚的原文全文完整注音版、拼音版标准翻译译文及注释
- 肩袖损伤病例讨论
- 全国国家版图知识竞赛题库及答案(中小学组)
- 卫生院中医、康复专科建设实施方案-
- 人教版五年级下册道德与法治教案
- 2024-2030年中国烹饪培训行业经营管理风险及未来投资效益盈利性报告
- DB13(J)-T 8543-2023 公共建筑节能设计标准(节能72%)
- 《一句顶一万句》读书分享
评论
0/150
提交评论