版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第1010章章 含有耦合电感的电路含有耦合电感的电路l重点重点 1. 1.互感和互感电压互感和互感电压 2. 2.有互感电路的计算有互感电路的计算 3. 3.空心变压器和理想变压器空心变压器和理想变压器10.1 10.1 互感互感1. 1. 互感互感 耦合电感元件属于多端元件,在实际电路中,如收音机、耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常
2、必要的。这类多端元件的电路问题的分析方法是非常必要的。线圈线圈1 1中通入电流中通入电流i i1 1时,在线圈时,在线圈1 1中产生磁通中产生磁通( (magnetic flux),同时,有部分磁通穿过临近线圈,同时,有部分磁通穿过临近线圈2 2,这部分磁通称为,这部分磁通称为互感磁通。两线圈间有磁的耦合。互感磁通。两线圈间有磁的耦合。+u11+u21i1 11 21N1N2定义定义 :磁链磁链 (magnetic linkage), =N 当线圈周围无铁磁物质当线圈周围无铁磁物质( (空心线圈空心线圈) )时时, 与与i 成正比成正比, ,当只有当只有一个线圈时:一个线圈时: 。为为自自感感
3、系系数数,单单位位亨亨称称H)( 111111LiL 当两个线圈都有电流时,每一线圈的磁链为自磁链与当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:互磁链的代数和: 2121112111 iMiL 1212221222 iMiL 。为互感系数,单位亨为互感系数,单位亨、称称H)( 2112MM注注(1 1)M值与线圈的形状、几何位置、空间媒质有关,与值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,满足线圈中的电流无关,满足M12=M21(2 2)L L总为正值,总为正值,M值有正有负值有正有负. .2. 2. 耦合系数耦合系数 (coupling coefficien
4、t) 用耦合系数用耦合系数k 表示两个表示两个线圈磁耦合的紧密程度线圈磁耦合的紧密程度。121def LLMk当当 k=1 称全耦合称全耦合: 漏磁漏磁 s1 = s2=0即即 11= 21 , 22 = 121)(2211211222112121221 iLiLMiMiLLMLLMk一般有:一般有:耦合系数耦合系数k与线圈的结构、相互几何位置、空间磁介质有关与线圈的结构、相互几何位置、空间磁介质有关互感现象互感现象利用利用变压器:信号、功率传递变压器:信号、功率传递避免避免干扰干扰克服:合理布置线圈相互位置或增加屏蔽减少互感作用。克服:合理布置线圈相互位置或增加屏蔽减少互感作用。当当i i1
5、 1为时变电流时,磁通也将随时间变化,从而在线为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。圈两端产生感应电压。 dddd111111tiLtu 当当i1、u11方向关联时方向关联时,或或i1方向与方向与 符合右手螺旋时,符合右手螺旋时,根据电磁感应定律和楞次定律:根据电磁感应定律和楞次定律: 当两个线圈同时通以电流时,每个线圈两端的电压当两个线圈同时通以电流时,每个线圈两端的电压均包含自感电压和互感电压:均包含自感电压和互感电压:tiMtudd dd 12121 自感电压自感电压互感电压互感电压3. 3. 耦合电感上的电压、电流关系耦合电感上的电压、电流关系 当互感磁力线与自
6、感磁力线同方向当互感磁力线与自感磁力线同方向, 且各线圈电压、电且各线圈电压、电流参考方向互相关联时流参考方向互相关联时在正弦交流电路中,其相量形式的方程为在正弦交流电路中,其相量形式的方程为22122111 jjjj ILIMUIMILU 两线圈的自磁链和互磁链相助,互感电压取正,两线圈的自磁链和互磁链相助,互感电压取正,否则取负。表明互感电压的正、负:否则取负。表明互感电压的正、负:(1)与电流的参考方向有关。)与电流的参考方向有关。(2)与线圈的相对位置和绕向有关。)与线圈的相对位置和绕向有关。注注tiLtiMuuutiMtiLuuudd dd dd dd2212221221112111
7、 4.4.互感线圈的同名端互感线圈的同名端对自感电压,当对自感电压,当u, i 取关联参考方向,取关联参考方向,u、i与与 符合符合右手螺旋定则,其表达式为右手螺旋定则,其表达式为 dddd dd 111111111tiLtNtu 上式说明,对于自感电压上式说明,对于自感电压,由于电压电流为同一线圈由于电压电流为同一线圈上的,只要参考方向确定了,其数学描述便可容易地写上的,只要参考方向确定了,其数学描述便可容易地写出,可不用考虑线圈绕向。出,可不用考虑线圈绕向。i1u11对互感电压,因产生该电压的的电流在另一线圈上,对互感电压,因产生该电压的的电流在另一线圈上,因此,要确定其符号,就必须知道两
8、个线圈的绕向。这在因此,要确定其符号,就必须知道两个线圈的绕向。这在电路分析中显得很不方便。电路分析中显得很不方便。为解决这个问题引入同名端的为解决这个问题引入同名端的概念。概念。tiMutiMudd dd1313112121 当两个电流分别从两个线圈的对应端子同当两个电流分别从两个线圈的对应端子同时流入或流出,若所产生的磁通相互加强时,时流入或流出,若所产生的磁通相互加强时,则这两个对应端子称为两互感线圈的同名端。则这两个对应端子称为两互感线圈的同名端。 * 同名端同名端i1+u11+u21 11 0N1N2+u31N3 si2i3注意:线圈的同名端必须两两确定。注意:线圈的同名端必须两两确
9、定。确定同名端的方法:确定同名端的方法:(1) (1) 当两个线圈中电流同时由同名端流入当两个线圈中电流同时由同名端流入( (或流出或流出) )时,两时,两个电流产生的磁场相互增强。个电流产生的磁场相互增强。 i1122*112233* 例例(2) (2) 当随时间增大的时变电流从一线圈的一端流入时,将当随时间增大的时变电流从一线圈的一端流入时,将会引起另一线圈相应同名端的电位升高。会引起另一线圈相应同名端的电位升高。 同名端的实验测定:同名端的实验测定:i1122*R SV+电压表正偏。电压表正偏。0 , 0 22 dtdiMudtdi如图电路,当闭合开关如图电路,当闭合开关S时,时,i增加
10、,增加, 当两组线圈装在黑盒里,只引出四个端线组,要当两组线圈装在黑盒里,只引出四个端线组,要确定其同名端,就可以利用上面的结论来加以判断。确定其同名端,就可以利用上面的结论来加以判断。由同名端及由同名端及u、i参考方向确定互感线圈的特性方程参考方向确定互感线圈的特性方程 有了同名端,以后表示两个线圈相互作用,就不再考有了同名端,以后表示两个线圈相互作用,就不再考虑实际绕向,而只画出同名端及参考方向即可。互感电压虑实际绕向,而只画出同名端及参考方向即可。互感电压正负的确定看产生互感电压的电流是否从同名端流入正负的确定看产生互感电压的电流是否从同名端流入; ;若若产生互感电压的电流从同名端流入产
11、生互感电压的电流从同名端流入,则同名端为互感电压则同名端为互感电压的参考高电位的参考高电位, ,反之为负反之为负; ;当互感电压参考高电位与端口当互感电压参考高电位与端口电压参考电位一致时互感取正电压参考电位一致时互感取正, ,否则取负否则取负. .tiMudd121 tiMudd121 i1*u21+Mi1*u21+M“+”“+”tiMtiLudddd2111tiLtiMudddd2212i1*L1L2+_u1+_u2i2MtiMtiLudddd2111 tiLtiMudddd2212 i1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2
12、M例例写出写出图示图示电路电路电压、电压、电流电流关系关系式式“+”“+”“-”“+”“+”“+”“-”“-”看产生互感电压的电流是否从同名端流入看产生互感电压的电流是否从同名端流入; ;i i2 2从同名端流入从同名端流入, ,则同名端为互感电压的参考高电位则同名端为互感电压的参考高电位当互感电压参考高电位与端口电压参考电位一致时互感取正当互感电压参考高电位与端口电压参考电位一致时互感取正+i i1 1i i2 2从同名端流出从同名端流出, ,则同名端为互感电压的参考低电位则同名端为互感电压的参考低电位“- -”当互感电压参考高电位与端口电压参考电位不一致时互感取负当互感电压参考高电位与端口
13、电压参考电位不一致时互感取负例例i1*L1L2+_u2MR1R2+_u21010i1/At/s)()(H,1,H2,H5,10 2211tutuMLLR和和求求已已知知 tstVstVtiMtu2 021 1010 10dd)(12解解 tstVtstVttiLiRtu2 021 150 10010 50 100dd)(111ststtsttti2 021 201010 10)(110.2 10.2 含有耦合电感电路的计算含有耦合电感电路的计算1. 1. 耦合电感的串联耦合电感的串联(1 1) 顺接串联顺接串联tiLRitiMLLiRRiRtiMtiLtiMtiLiRudd dd)2()( d
14、ddddddd21212211 MLLLRRR2 2121 iRLu+iM*u2+R1R2L1L2u1+u+去耦等效电路去耦等效电路(2 2) 反接串联反接串联MLLLRRR2 2121 tiLRitiMLLiRRiRtiMtiLtiMtiLiRudddd)2()( dddddddd21212211 )(2121LLM 互感不大于两个自感的算术平均值。互感不大于两个自感的算术平均值。02 21 MLLLiM*u2+R1R2L1L2u1+u+iRLu+ 顺接一次,反接一次,就可以测出互感:顺接一次,反接一次,就可以测出互感:4反反顺顺LLM 全耦合时全耦合时 21LLM 221212121)(2
15、2LLLLLLMLLL 当当 L1=L2 时时 , M=L4M 顺接顺接0 反接反接L=互感的测量方法:互感的测量方法:在正弦激励下:在正弦激励下: )2(j)(2121IMLLIRRU+ I 1IR 1jIL jIM 2IR 2jIL jIM1 U2 U U I 1IR 1jIL jIM 2IR 2jIL jIM1 U2 U U相量图:相量图:(a) (a) 顺接顺接(b) (b) 反接反接 I* 1 U+R1R2j L1+j L22 Uj M U(1) 同侧并联同侧并联tiMtiLudddd211 tiMLLMLLudd2)(21221 0 2)(21221 MLLMLLLeqi = i1
16、 +i2 解得解得u, i 的关系:的关系:2. 2. 耦合电感的并联耦合电感的并联*Mi2i1L1L2ui+tiMtiLudddd122 等效电感:等效电感:如全耦合:如全耦合:L1L2=M2当当 L1 L2 ,Leq=0 ( (物理意义不明确物理意义不明确) )L1=L2 , Leq=L (相当于导线加粗,电感不变相当于导线加粗,电感不变) ) (2) 异侧并联异侧并联*Mi2i1L1L2ui+tiMtiLudddd211 i = i1 +i2 tiMtiLudddd122 tiMLLMLLudd2)(21221 解得解得u, i 的关系:的关系:等效电感:等效电感:0 2)(21221
17、MLLMLLLeq3.3.耦合电感的耦合电感的T T型等效型等效(1 1) 同名端为共端的同名端为共端的T T型去耦等效型去耦等效*j L1 I1 I2 I123j L2j M21113 jj IMILU12223 jj IMILU 21 III j)(j11IMIML j)(j22IMIML j (L1-M) I1 I2 I123j Mj (L2-M)(2 2) 异名端为共端的异名端为共端的T T型去耦等效型去耦等效*j L1 I1 I2 I123j L2j Mj (L1M) I1 I2 I123j Mj (L2M)21113 jj IMILU 12223 jj IMILU 21 III j
18、)(j11IMIML j)(j22IMIML *Mi2i1L1L2ui+*Mi2i1L1L2u+u+j (L1M) I1 I2 Ij Mj (L2M)j (L1M)1 I2 Ij Mj (L2M)4. 4. 受控源等效电路受控源等效电路2111 IMjILjU 1222 IMjILjU *Mi2i1L1L2u1+u2+j L11 I2 Ij L2+2 IMj 1 IMj +2 U+1 U例例abL 求等效电感求等效电感M=3H6H2H0.5H4HabM=4H6H2H3H5HabM=1H9H2H0.5H7Hab-3HLab=5H4H3H2H1Hab3HLab=6H解解RRii的两电阻的乘积接于端
19、钮相对端钮的电阻接在与电阻两两乘积之和mnRRmn5. 5. 有互感的电路的计算有互感的电路的计算 (1) (1) 有互感的电路的计算仍属正弦稳态分析,前面介绍的有互感的电路的计算仍属正弦稳态分析,前面介绍的 相量分析的方法均适用。相量分析的方法均适用。 (2) (2) 注意互感线圈上的电压除自感电压外,还应包含互感注意互感线圈上的电压除自感电压外,还应包含互感 电压。电压。 (3) (3) 一般采用支路法和回路法计算。一般采用支路法和回路法计算。列写下图电路的回路电流方程。列写下图电路的回路电流方程。例例1MuS+CL1L2R1R2*+ki1i1SUIIMjILjILjR )()(32311
20、11 213MuS+CL1L2R1R2*+ki1i113132222)()(IkIIMjILjILjR 0)()()1(23132211321 IIMjIIMjILjILjICjLjLj 解解本节课重点本节课重点: (1)互感和互感电压的表示)互感和互感电压的表示 (2)同名端的概念)同名端的概念 (3)等效电感的计算)等效电感的计算 作业作业:P272/10-4思考思考:10-110.4 10.4 变压器原理变压器原理*j L11 I2 Ij L2j M+S UR1R2Z=R+jX 变压器由两个具有互感的线圈构成,一个线圈接向变压器由两个具有互感的线圈构成,一个线圈接向电源,另一线圈接向负载
21、,变压器是利用互感来实现从电源,另一线圈接向负载,变压器是利用互感来实现从一个电路向另一个电路传输能量或信号的器件。当变压一个电路向另一个电路传输能量或信号的器件。当变压器线圈的芯子为非铁磁材料时,称空心变压器。器线圈的芯子为非铁磁材料时,称空心变压器。1. 1. 空心变压器电路空心变压器电路原边回路原边回路副边回路副边回路2. 2. 分析方法分析方法(1 1) 方程法分析方程法分析*j L11 I2 Ij L2j M+S UR1R2Z=R+jXS2111 j-) j( UIMILR 0)j(j2221 IZLRIM令令 Z11=R1+j L1, Z22=(R2+R)+j( L2+X)回路方程
22、:回路方程:S2111 j- UIMIZ 0j2221 IZIM )(22211S1 ZMZUI 222111Sin)( ZMZIUZ 1122211S2222211S2)(1j)(j ZMZZUMZZMZUMI 1 I+S UZ11222)(ZM原边等效电路原边等效电路2 I+oc UZ22112)(ZM副边等效电路副边等效电路(2 2) 等效电路法分析等效电路法分析lllXRXRXMXRRMXRMZMZjj j)(22222222222222222222222222222 Zl= Rl+j Xl2222222222XRRMRl 2222222222XRXMXl 11in2 , , 0ZZI
23、 即副边开路即副边开路当当1 I+S UZ11222)(ZM副边对原边的引入阻抗。副边对原边的引入阻抗。引入电阻。引入电阻。恒为正恒为正 , 表示副边回路表示副边回路吸收的功率是靠原边供给的。吸收的功率是靠原边供给的。引入电抗。引入电抗。负号反映了引入电负号反映了引入电抗与副边电抗的性质相反。抗与副边电抗的性质相反。原边等效电路原边等效电路引入阻抗反映了副边回路对原边回路的影响。从物理意引入阻抗反映了副边回路对原边回路的影响。从物理意义讲,虽然原副边没有电的联系,但由于互感作用使闭合的义讲,虽然原副边没有电的联系,但由于互感作用使闭合的副边产生电流,反过来这个电流又影响原边电流电压。副边产生电
24、流,反过来这个电流又影响原边电流电压。从能量角度来说从能量角度来说 : :电源发出有功电源发出有功 功率功率 P= I12(R1+Rl)I12R1 消耗在原边;消耗在原边;I12Rl 消耗在消耗在副副边,由互感传输。边,由互感传输。2221 j IZIM 证证明明22222222212)()(IXRIM 222221222222222)(IRIXRRM 11Soc jZUMU 112)(ZM原边对副边的引入阻抗。原边对副边的引入阻抗。利用戴维宁定理可以求得利用戴维宁定理可以求得空心变压器副边的等效电路空心变压器副边的等效电路 。 副边开路时,副边开路时, 原边电流在副边产原边电流在副边产 生的
25、互感电压。生的互感电压。2 I+oc UZ22112)(ZM副边等效电路副边等效电路(3 3) 去耦等效法分析去耦等效法分析 对含互感的电路进行去耦等效,变为无互感的电对含互感的电路进行去耦等效,变为无互感的电路,再进行分析。路,再进行分析。*Mi2i1L1L2u+u+j (L1M)1 I2 Ij Mj (L2M)L1=3.6H , L2=0.06H , M=0.465H , R1=20 , R2=0.08 , RL=42 , 314 314rad/s,V 0115o sU. , :21II求求应用原边等效电路应用原边等效电路4 .1130j20j1111LRZ 85.1808.42j2222
26、jLRRZL 8188422)1 .24(3 .4621 .2411.46146o2222.-jZXZMl1 I+S UZ11222)(ZM 例例1*j L11 I2 Ij L2j M+S UR1R2RL解解1A)9 .64(111. 08 .1884224 .1130200115o11S1 jjZZUIl应用副边等效电路应用副边等效电路VjjLjRUMjIMjUSOC085.144 .1130200115146 111 85.18906 .1130213164 .113020146)(2112jjZMAjjZIMjI1351. 01 .2411.461 .252 .1685.1808.429
27、 .64111. 01462212 解解22 I+oc UZ22112)(ZMAjjUIOC0353. 008.42085.1485.1808.4285.182例例2全耦合互感电路如图,求电路初级端全耦合互感电路如图,求电路初级端ab间的等效阻抗。间的等效阻抗。* *L1aM+S UbL2解解1111 jLZ 222 jLZ 22222)(LMjZMZl )1()1( 21212122111kLjLLMLjLMjLjZZZlab 解解2画出去耦等效电路画出去耦等效电路L1M L2M+ SUMab)1( )1( )( )/()(212121222122121kLLLMLLMLLLMLMMLMLM
28、MLLab 已知已知 US=20 V , 原边引入阻抗原边引入阻抗 Zl=10j10 .求求: ZX 并求负载获得的有功功率并求负载获得的有功功率.101010j42222jZZMZXl 8 . 9 j2 . 010200)1010(41010104 jjjjZX此时负载获得的功率:此时负载获得的功率: W101010202 lRRPP)(引引 W104 , *2S11 RUPZZl实际是最佳匹配:实际是最佳匹配:解:解:* *j10 2 Ij10 j2+S U10 ZX+S U10+j10 Zl=10j10 例例3解解10.510.5 理想变压器理想变压器 121LLMk 1.1.理想变压器
29、的三个理想化条件理想变压器的三个理想化条件 理想变压器是实际变压器的理想化模型,是对互理想变压器是实际变压器的理想化模型,是对互感元件的理想科学抽象,是极限情况下的耦合电感。感元件的理想科学抽象,是极限情况下的耦合电感。(2)全耦合)全耦合(1)无损耗)无损耗线圈导线无电阻,做芯子的铁磁材料的线圈导线无电阻,做芯子的铁磁材料的磁导率无限大。磁导率无限大。(3)参数无限大)参数无限大nLLMLL 2121, 2, 1NN ,但但 以上三个条件在工程实际中不可能满足,但在一些实以上三个条件在工程实际中不可能满足,但在一些实际工程概算中,在误差允许的范围内,把实际变压器当理际工程概算中,在误差允许的
30、范围内,把实际变压器当理想变压器对待,可使计算过程简化。想变压器对待,可使计算过程简化。 i1122N1N2 2211212.2.理想变压器的主要性能理想变压器的主要性能(1)变压关系)变压关系1 kdtdNdtdu 111 dtdNdtdu 222 nNNuu 2121*n:1+_u1+_u2*n:1+_u1+_u2理想变压器模型理想变压器模型若若nNNuu 2121(2)变流关系)变流关系i1*L1L2+_u1+_u2i2MdtdiMdtdiLu2111 )()(1)(210111tiLMduLtit 考虑到理想化条件:考虑到理想化条件: 121LLMk nLLL 21211NN ,0nL
31、LLM1121 )(1)(21tinti 若若i1、i2一个从同名端流入,一个从同名端流出,则有:一个从同名端流入,一个从同名端流出,则有:)(1)(21tinti n:1理想变压器模型理想变压器模型(3)变阻抗关系)变阻抗关系ZnIUnInUnIU22222211)( )/1 (*1 I2 I+2 U+1 Un : 1Z1 I+1 Un2Z 理想变压器的阻抗变换性质只改变阻抗的理想变压器的阻抗变换性质只改变阻抗的大小,不改变阻抗的性质。大小,不改变阻抗的性质。注注(b)理想变压器的特性方程为代数关系,因此理想变压器的特性方程为代数关系,因此它是无记忆的多端元件。它是无记忆的多端元件。 21nuu 211ini *+n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 党员培训工作方案(18篇)
- 2025年搏击运动项目申请报告模范
- 2025年林产化学产品项目申请报告
- 2025年污水处理鼓风机项目规划申请报告模范
- 2025年泳池热泵项目申请报告模板
- 2022年大学生实习报告例文5篇
- 2025年智能汽车项目申请报告模板
- 2025年干燥设备:热风炉项目规划申请报告模板
- 收银员的辞职报告模板汇编7篇
- 企业诚信承诺书合集6篇
- 2024-2030年版中国IPVPN服务行业发展现状及投资商业模式分析报告
- 北京市海淀区2021-2022学年第一学期四年级期末考试语文试卷(含答案)
- 2024-2030年中国企业大学行业运作模式发展规划分析报告
- 电动力学-选择题填空题判断题和问答题2018
- 房地产激励培训
- 山东省济南市2023-2024学年高二上学期期末考试地理试题 附答案
- 【MOOC】微型计算机原理与接口技术-南京邮电大学 中国大学慕课MOOC答案
- 违章建筑举报范文
- 糖尿病伤口护理
- 人教版(2024新版)八年级上册物理期末必刷单项选择题50题(含答案解析)
- 建筑师业务实习答辩
评论
0/150
提交评论