一次函数基础知识梳理_第1页
一次函数基础知识梳理_第2页
一次函数基础知识梳理_第3页
一次函数基础知识梳理_第4页
一次函数基础知识梳理_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基础知识梳理1、正比例函数一般地,形如ykx(k是常数,(k0)的函数叫做正比例函数,其中k叫做比例系数。2、正比例函数图象和性质一般地,正比例函数ykx(k为常数,(k0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线ykx。当k>0时,直线ykx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线ykx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.3、正比例函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式ykx(k0)中的常数k,其基本步骤是:(1)设出含有待定系数的函数解析式ykx(k0);(2)把已知条件(自变量与

2、函数的对应值)代入解析式,得到关于系数k的一元一次方程;(3)解方程,求出待定系数k;(4)将求得的待定系数的值代回解析式4、一次函数般地,形如ykxb(k,b是常数,kw0),那么y叫做x的一次函数.当b=0时,ykxb即y=kx,所以说正比例函数是一种特殊的一次函数考点一:一次函数的概念例1、一根弹簧长15cm,它所挂的物体质量不能超过18kg,并且每挂1kg就伸长1cm.写出挂上物体后的弹簧2长度y(cm)与所挂物体质量x(kg)之间的函数关系式例2、下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-x;(2)y=-2;(3)y=-3-5x;2x(4)y=-5x2;(5)y=6x

3、-1(6)y=x(x-4)-x2.2练习2-(1)当m为何值时,函数y=-(m-2)xm+(m-4)是一次函数?2(2)当m为何值时,函数y=-(m-2)xm3+(m-4)是正比例函数?5、一次函数的图象b(1) 一次函数ykxb(k0)(的图象是经过(0,6和(总,0)两点的一条直线,因此一次函数ykxbk的图象也称为直线ykxb.(2) 一次函数ykxb的图象的画法根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可。一般情况下:是先选取它与两坐标轴的交点:(0,b),(b,k0).即横坐标或纵坐标为0的点.

4、考点二:一次函数的图像例3.已知一次函数y=(4m+1)x-(m+1).(1) m为何值时,y随x的增大而减小?:(2) m为何值时,直线与y轴的交点在x轴上?:(3) m为何值时,直线位于第二、三、四象限?二(1)对于函数y=5x+6,y的值随x值的减小而。(2) 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过象限。(3) 一次函数y=(6-3m)x+(2n4)不经过第三象限,则mn的范围是。例4.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn*0)的图象的是()Y4练习:(1)已知直线y=kx+b经过第一、二、四象限,那

5、么直线y=-bx+k经过第象限。(2)无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第象限。(3)y=2x与y=-2x+3的图像的交点在第象限.3(4)无论实数m取什么值,直线y=x+m与y=-x+5的交点都不能在()A、第一象限B、第二象限C、第三象限D第四象限6、正比例函数与一次函数图象之间的关系一次函数ykxb的图象是一条直线,它可以看作是由直线y=kx平移四个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).7、直线y=kx+b的图象和性质与k、b的关系如下表所示:b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限

6、经过A、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右卜降,y随x的增大而减小8、直线y1kxb与y2kx图象的位置关系:(1)当b>0时,将y2kx图象向x轴上方平移b个单位,就得到y1kxb的图象.(2)当b<0时,将y2kx图象向x轴下方平移一b个单位,就得到了y1kxb的图象.9、直线li:yikixn与12:y2k2xb2的位置关系可由其解析式中的系数k和常数b来确定:当kik?时,11与l2相交考点三:一次函数图像的变换例5.将直线y=2x向右平移2个单位所得的直线的解析式是()A、y=2x+2

7、B、y=2x-2C、y=2(x-2)Qy=2(x+2)例6.一次函数y=2x+3的图象沿y轴向下平移2个单位,那么所得图象的函数解析式是()A、y=2x-3B、y=2x+2C、y=2x+1D、y=2x例7.函数yKx的图象过点p(2,3),且与函数y2k2x的图象关于y轴对称,那么他们的解析式,=;3练习:(1)若正比例函数y=kx与y=2x的图象关于x轴对称,则k的值二(2)如图,是一个正比例函数的图象,把该图象向左+平移一个单位长度,得到的函数图象的解析式为(3)直线y1x向上平移1个单位,再向右平移1个单位得到直线。(4)已知直线Vry=2x+1.I求已知直线与y轴交点A的坐标;-10/

8、若直线y=kx+b与已知直线关于y轴对称,求k与b的值.10、直线ykxb(kw0)与坐标轴的交点.(1)直线y=kx与x轴、y轴的交点都是(0,0);b(2)直线ykxb与x轴父点坐标为(一,0),与y轴交点坐标为(0,b).k11、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式考点四用待定系数法求函数解析式例8.若点A(2,-3)、B(4,3)、C(5,a)在同一条

9、直线上,则a的值是()A、6或-6B、6C、-6D、6和3例9.如图,已知点 A的坐标为(1, 3),点B的坐标为(3, 1).1.写出一个图象经过 A, B两点的函数表达式 2.指出该函数的两个性质.3- -2 S-Li.o 1 2 3 X例10、如图所示,已知直线 y=x+3的图象与x轴、y轴交于A, B两点, 把AOBW面积分为2: 1的两部分,求直线l的解析式.直线l经过原点,与线段AB交于点C,例11、一次函数y k1x 4与正比例函数 y k2X的图象都经过点(2-1 ).(1)分别求出这两个函数的解析式.(2)求这两个函数图象与 x轴围成的三角形的面积.练习:(1)如果一次函数y

10、=kx+b的图象经过点(0,-4),那么b的值是(A、1B、-1C、-4D、4(2)已知一次函数的图象与直线y=-x+1平行,且过点(8, 2),那么此一次函数的解析式为(A、y=x2B、y=x6C、y=-x+10D、y=-x-1函放it 函 薮严k工+btk壬 oO过点,f。. b)且平行于产值的一条直线-2-10123性演当卜>。由,y随x 的增大而增大,图舞台道 第一、三象限:当b>0时.过第一、二、 三豢限;当bR时n只过第一, 三尊隔;当b<0时*过空一、三、 四象限.(2)当fa<0时.随式 的蟠大而减小.图象通过 第二、四象限.当bA。时,过第一、二. 四

11、象明;当勤押时,果过55二、 四象限;当b<Q时.过第二.三、 四歌竦12、正比例 函数和一次函 数的图象、性 质考点五:一次函数与一兀一 次方程及一元 一次不等式例12已知一次函数 y=ax+b(a、b为常 数),x与y的 部分对应值如 下表:过原点的一条直迂”3k 21图象过原点.(1)当k>0,尹随富的增大而墙大,图象必过第一、三象限;(2)当k<0时,>随菖的增大而被小,图象通道第二、四象限那么方y6420-2-4程ax+b=0的解是;不等式ax+b>0的解是。练习:(1)一元一次方程3x-1=5的解就是一次函数与x轴的交点横坐标.(2)如图,直线y=kx

12、+b交坐标轴于A,B两点,则不等式kx+b>0的解集是()丁八A、x>-2B、x>3Cxv-2D、x<3/(3)作出函数y=2x-4的图象,并根据图象回答下列问题:/当-2WxW4时,求函数y的取值范围;,当x取什么值时,y<0,y=0,y>0;%手当x取何值时,-4<y<2.0工能力提升:1 .设b>a,将一次函数丫去乂+2与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是()2 .若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四

13、3 .一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限4 .无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限5 .已知一次函数y=-6x+1,当-3wxw1时,y的取值范围是.6 .若一次函数y=kx+b,当-3WxW1时,对应的y值为1WyW9,?则一次函数的解析式为7 .已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当X=1时Y=4X=2时Y=51求Y与X得函数关系2当X=-2时Y的值8 .已知y+3与x+2成正比例,且当x=3时,y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论