![中考中档题难题练习_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/ae88ce37-1a53-4701-887d-d7bdfbb73735/ae88ce37-1a53-4701-887d-d7bdfbb737351.gif)
![中考中档题难题练习_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/ae88ce37-1a53-4701-887d-d7bdfbb73735/ae88ce37-1a53-4701-887d-d7bdfbb737352.gif)
![中考中档题难题练习_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/ae88ce37-1a53-4701-887d-d7bdfbb73735/ae88ce37-1a53-4701-887d-d7bdfbb737353.gif)
![中考中档题难题练习_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/ae88ce37-1a53-4701-887d-d7bdfbb73735/ae88ce37-1a53-4701-887d-d7bdfbb737354.gif)
![中考中档题难题练习_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/ae88ce37-1a53-4701-887d-d7bdfbb73735/ae88ce37-1a53-4701-887d-d7bdfbb737355.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、26(本题8分)如图,在矩形ABCD中,AB=4,BC=3,将矩形绕点C按顺时针方向旋转,使点B落在线段AC上,得矩形CEFG,边CD与EF交于点H,连接DG(1)CH= (2)求DG的长27(本题9分)如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8), OA=OB动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动, 动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线,分别交OA、AB于E、F,连结PE、PF设动点P、Q同时出发,当点P到达点B时,点Q也停止运动,它们运动的时间为t秒(t0)(1)点E的坐标为 ,F的
2、坐标为 ;(均用t来表示) (2)当t为何值时,四边形OPFE是平行四边形;(3)是否存在某一时刻t,使PEF为直角三角形?若存在, 请求出此时刻t的值:若不存在,请说明理由16如图,ABC中,如果ABAC,ADBC于点D,M为AC中点,AD与BM 交于点G,那么SGDM:SGAB的值为_17.如图边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是 18如图,A是反比例函数y图像上一点,C是线段OA上一点,且OC:OA1:3作CDx轴,垂足为点D,延长DC交反比例函数图像于点B,SABC8,则k的_ADCB(第17题)EABDCMG(第1
3、6题)ABODCxy(第18题)24(本题满分8分) 如图,直线与轴、轴分别交于点A、B,点、是直线与双曲线的两个交点,过点C作CEy轴于点E,且BCE的面积为1.(1)求双曲线的函数解析式;(2)观察图象,写出当时的取值范围;(3)若在轴上有一动点F,使得以点F、A、B为顶点的三角形与BCE相似,求点F的坐标.25(本题满分8分) 如图,在平面直角坐标系中,点A (0,4)动点P从原点O出发,沿x轴正方向以每秒2个单位的速度运动,同时动点Q从点A出发,沿y轴负方向以每秒1个单位的速度运动,以QO、QP为邻边构造平行四边形OQPB,在线段OP的延长线长取点C,使得PC2,连接BC、CQ设点P运
4、动的时间为t(0<t<4)秒(1) 求点B、C的坐标;(用含t的代数式表示)(2) 当t1时,在平面内存在一点D,使得以点Q、B、C、D为顶点的四边形是平行四边形,直接写出此时点D的坐标(3) 当QPC90°(其中为PBC的一个内角)时,求t的值;AQOPCBxy26(本题满分8分) 已知:如图1,在平面直角坐标系中,点A(1,0),B(0,2),将点B沿x轴正方向平移3个单位长度得到对应点B,点B恰在反比例函数y (x0)的图像上(1) 求k的值;(2) 如图2,将AOB(点O为坐标原点)沿AB翻折得到ACB,求同一平面内点C的坐标;(图1)AOByxB(3) 在同一平
5、面内,是否存在这样的点P,以P为位似中心,将AOB放大为原来的两倍后得到DEF(即DEFAOB,且相似比为2),使得点D、F恰好在反比例函数y (x0)的图像上?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由(图2)AOByxC(备用图)AOByx16. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点若AB=5,AD=12,则四边形ABOM的周长为 17如图,一次函数与反比例函数的图像交于A、B两点,则0<<的解集是 .18如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,,AnBnCnCn1按所示的方式放置点A1,A2,A3,An和点C1,C2,
6、C3,Cn分别在直线 (k0)和x轴上,已知点B1(1,1),B2(3,2), 则点B2015的坐标是 .yxOC1B2A2C3B1A3B3A1C2(第18题)(第16题)(第17题)27.(本题满分12分)在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且AOB=60°,反比例函数(k0)在第一象限内过点A,且与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若F为BC的中点,且SAOF24,求OA长及点C坐标;(3)在(2)的条件下,过点F作EFOB交OA于点E(如图2),若点P是直线EF上一个动点,连结,PA,PO,问是否存在点P,使得以
7、P,A,O三点构成的三角形是直角三角形?若存在,请指出这样的P点有几个,并直接写出其中二个P点坐标;若不存在,请说明了理由17如图,在平面直角坐标系O中,已知直线:,双曲线。在上取点A1,过点A1作轴的垂线交双曲线于点B1,过点B1作轴的垂线交于点A2,请继续操作并探究:过点A2作轴的垂线交双曲线于点B2,过点B2作轴的垂线交于点A3,这样依次得到上的点A1,A2,A3,An,。记点An的横坐标为,若,a2015= 18如图,在正方形ABCD中,AB=4,点E为CD上一动点,AE交BD于点F,过点F作FHAE,交BC于H,过H作GHBD于点G,下列结论:AF=FH, HAE=45°,
8、 BD=FG,CEH的周长为定值其中正确的是 (写正确结论的序号)。17直线与双曲线交于、两点,则的值是 .18图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB的长为 26(本题满分12分)(1)如图1,、是正方形的边及延长线上的点,且,则与的数量关系是 .(2)如图2,、是等腰的边及延长线上的点,且,连接交于点,交于点,试判断与的数量关系,并说明理由;(3)如图3,已知矩形的一条边,将矩形沿过的直线折叠,使得顶点落在边上的点处。动点在线段上(点与点、不重合),动点在线段的延长线上,且,连接交于点,作于点,且,试根据上题的结论求出矩形ABCD的面积 图1 图2 图327(本题满分12分)阅读理解:对于任意正实数a、b,0,0,只有当ab时,等号成立结论:在(a、b均为正实数)中,若ab为定值p,则a+b,只有当a=b时,a+b有最小值根据上述内容,填空:若m0,只有当m 时,有最小值,最小值为 探索应用:如图,已知,为双曲线(x0)上的任意一点,过点作x轴于点,y轴于点D求四边形面积的最小值,并说明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级上册数学口算题
- 学校厨房安全消防培训
- 2024-2025学年一年级数学下册第一单元认识图形二教案新人教版
- 2024-2025学年二年级数学上册第六单元表内乘法和表内除法二第9课时练习十三教案苏教版
- 中国青年政治学院《软件工程经济学》2023-2024学年第二学期期末试卷
- 铜川职业技术学院《发酵工程实验》2023-2024学年第二学期期末试卷
- 南昌影视传播职业学院《生药学专论》2023-2024学年第二学期期末试卷
- 水库建设项目计划书
- 福州理工学院《交互设计基础》2023-2024学年第二学期期末试卷
- 扬州工业职业技术学院《微生物药物学》2023-2024学年第二学期期末试卷
- 人教版八年级历史下册教材插图
- 医院运营管理案例-北大国际医院-利用精益管理提升患者体验
- 2024-2030年中国润滑油行业发展趋势与投资战略研究报告
- 《洗煤厂工艺》课件
- 钢结构工程施工(第五版) 课件 2项目四 高强度螺栓
- 机票预订行业营销策略方案
- 大学生就业指导(高等院校学生学习就业指导课程)全套教学课件
- 谢尔塔拉露天煤矿变更环评
- 《实验诊断学》课件
- 眼的解剖结构与生理功能课件
- 小学网管的工作总结
评论
0/150
提交评论