版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、山东科技大学继续教育学生毕业论文用纸f1绪论11直轴式轴向柱塞泵工作原理与性能参数31.1 直轴式轴向柱塞泵工作原理31.2 直轴式轴向柱塞泵主要性能参数42直轴式轴向柱塞泵运动学及流量品质分析81 柱塞运动学分析81 滑靴运动分析103柱塞受力分析与设计121.2 柱塞受力分析121.3 柱塞设计164滑靴受力分析与设计223.2 滑靴受力分析223.3 滑靴设计253.4 滑靴结构型式与结构尺寸设计265配油盘受力分析与设计326.1 配油盘受力分析326.2 配油盘设计366缸体受力分析与设计39缸体的稳定性39缸体主要结构尺寸的确定397柱塞回程机构设计428斜盘力矩分析44柱塞液压力
2、矩M145带卸荷槽非对称正重迭型配油盘45回程盘中心预压弹簧力矩M346结论47参考文献48致谢49绪论随着工业技术的不断发展,液压传动也越来越广,而作为液压传动系统心脏的液压泵就显得更加重要了。在容积式液压泵中,惟有柱塞泵是实现高压、高速化、大流量的一种最理想的结构,在相同功率情况下,径向往塞泵的径向尺寸大、径向力也大,常用于大扭炬、低转速工况,做为按压马达使用。而轴向柱塞泵结构紧凑,径向尺寸小,转动惯量小,故转速较高;另外,轴向柱塞泵易于变量,能用多种方式自动调节流量,流量大。由于上述特点,轴向柱塞泵被广泛使用于工程机械、起重运输、冶金、船舶等多种领域。航空上,普遍用于飞机液压系统、操纵系
3、统及航空发动机燃油系统中。是飞机上所用的液压泵中最主要的一种型式。本设计对柱塞泵的结构作了详细的研究,在柱塞泵中有阀配流、轴配流、端面配流三种配流方式。这些配流方式被广泛应用于柱塞泵中,并对柱塞泵的高压、高速化起到了不可估量的作用。可以说没有这些这些配流方式,就没有柱塞泵。但是,由于这些配流方式在柱塞泵中的单一使用,也给柱塞泵带来了一定的不足。设计中对轴向柱塞泵结构中的滑靴作了介绍,滑靴一般分为三种形式;对缸体的尺寸、结构等也作了设计;对柱塞的回程结构也有介绍。柱塞式液压泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔容积实现吸油和排油的。是容积式液压泵的一种。柱塞式液压泵由于其主要零件柱塞和缸休均
4、为圆柱形,加工方便配合精度高,密封性能好,工作压力高而得到广泛的应用。柱塞式液压泵种类繁多,前者柱塞平行于缸体轴线,沿轴向按柱塞运动形式可分为轴向柱塞式和径向往塞式两大类运动,后者柱塞垂直于配油轴,沿径向运动。这两类泵既可做为液压泵用,也可做为液压马达用。泵的内在特性是指包括产品性能、零部件质量、整机装配质量、外观质量等在内的产品固有特性,或者简称之为品质。在这一点上,是目前许多泵生产厂商所关注的也是努力在提高、改进的方面。而实际上,我们可以发现,有许多的产品在工厂检测符合发至使用单位运行后,往往达不到工厂出厂检测的效果,发生诸如过载、噪声增大,使用达不到要求或寿命降低等等方面的问题;而泵在实
5、际当中所处的运行点或运行特征,我们称之为泵的外在特性或系统特性。正如科学技术的发展一样,现阶段科技领域中交叉学科、边缘学科越来越丰富,跨学科的共同研究是十分普遍的事情,作为泵产品的技术发展亦是如此。以屏蔽式泵为例,取消泵的轴封问题,必须从电机结构开始,单局限于泵本身是没有办法实现的;解决泵的噪声问题,除解决泵的流态和振动外,同时需要解决电机风叶的噪声和电磁场的噪声;提高潜水泵的可靠性,必须在潜水电机内加设诸如泄漏保护、过载保护等措施;提高泵的运行效率,须借助于控制技术的运用等等。这些无一不说明要发展泵技术水平,必须从配套的电机、控制技术等方面同时着手,综合考虑,最大限度地提升机电一体化综合水平
6、。柱塞式液压泵的显著缺点是结构比较复杂,零件制造精度高,成本也高,对油液污染敏感。这些给生产、使用和维护带来一定的困难。1直轴式轴向柱塞泵工作原理与性能参数1直轴式轴向柱塞泵工作原理直轴式轴向柱塞泵主要结构如图1.1所示。柱塞的头部安装有滑靴,滑靴底面始终贴着斜盘平面运动。当缸体带动柱塞旋转时,由于斜盘平面相对缸体平面(xoy面)存在一倾斜角V,迫使柱塞在柱塞腔内作直线往复运动。如果缸体按图示n方向旋转,在180360范围内,柱塞由下死点(对应180位置)开始不断伸出,柱塞腔容积不断增大,直至上死点(对应01位置)止。在这过程中,柱塞腔刚好与配油盘吸油窗相通,油液被吸人柱塞腔内,这是吸油过程。
7、随着缸体继续旋转,在0。180口范围内,柱塞在斜盘约束下由上死点开始不断进入腔内,柱塞腔容积不断减小,直至下孔点止。在这过程中,柱塞腔刚好与配油盘排油窗相通,油液通过排油窗排出。这就是排油过程。由此可见,缸体每转一跳各个往塞有半周吸油、半周排油。如果缸体不断旋转,泵便连续地吸油和排油。S67&C脸抽窗排油窗*桂客2彷悻3配他盘4一转动*S斜盘6一吊靴7过程叁S-中心果费图1.1直轴式轴向柱塞泵工作原理1.2直轴式轴向柱塞泵主要性能参数给定设计参数最大工作压力Pmax=40MPaHaA额定流量Q=100L/min最大流量CU=200L/min额定转速n=1500r/min最大转速n300
8、0r/minmax排量、流量与容积效率:二2-7dxsmaxZ40.2)2创(19.50.2创2)9qb=FxSmaxZ轴向柱塞泵排量qb是指缸体旋转一周,全部柱塞腔所排出油液的容积,即=2创(19.540.84(L)不计容积损失时,泵的理论流量Qtb为2Qtb-qbnb-dxSmaxZnb4=0.84X1500=1260(L)式中Fx柱塞横截面积;dx一柱塞外径;Smax一柱塞最大行程;Z一柱塞数;nb一传动轴转速。泵的理论排量q为1000Q1000'100、q=70.2(ml/r)n.hv1500'0.95为了避免气蚀现象,在计算理论排量时应按下式作校核计算:1nmaxq&
9、#163;C_13000-?70.23206<C。60p式中Cp是常数,对进口无预压力的油泵Cp=5400;对进口压力为5kgf/cm的油泵Cp=9100,这里取Cp=9100故符合要求。pp排量是液压泵的主要性能参数之一,是泵几何参数的特征量。相同结构型式的系列泵中,排量越大,作功能力也越大。因此,对液压元件型号命名的标准中明确规定用排量作为主参数来区别同一系列不同规格型号的产品。从泵的排量公式qb=1d;DfZtg尸中可以看出,柱塞直径dz、分布圆直4径Df、柱塞数Z都是泵的固定结构参数,并且当原动机确定之后传动轴转速nb也是不变的量。要想改变泵输出流量的方向和大小,可以通过改变斜盘
10、倾斜角学来实现。对于直轴式轴向柱塞泵,斜盘最大倾斜角¥max=1520°,该设计是通轴泵,受机构限制,取下限,即g=15O0泵实际输出流量Qgb为Qgb=Qtb-VQb=100-3=97(ml/min)式中“Qb为柱塞泵泄漏流量轴向柱塞泵的泄漏流量主要由缸体底面与配油盘之间、滑靴与斜盘平面之间及柱塞与柱塞腔之间的油液泄漏产生的。止匕外,泵吸油不足、柱塞腔底部无效容积也造成容积损失。泵容积效率。VB定义为实际输出流量Qgb与理论流量Qtb之比,即_Qgb_97VB0tb-10097%轴向柱塞泵容积效率一般为“访=0.940.98,故符合要求扭矩与机械效率不计摩擦损失时,泵的理
11、论扭矩Mtb为Mtb1.6106(N.m)Vpbqb_12创0.841062二2p式中Vpb为泵吸、排油腔压力差。考虑摩擦损失VMb时,实际输出扭矩Mgb为Mgb=Mtb、Mb=1.6?1060.2?1061.8106(N.m)轴向柱塞泵的摩擦损失主要由缸体底面与配油盘之间、滑靴与斜盘平面之间、柱塞与柱塞腔之间的摩擦副的相对运动以及轴承运动而产生的。泵的机械效率定义为理论扭矩Mtb与实际输出扭矩Mgb之比,即卜Mtbhmb=MgbMtbMtb+,Mb11.6106cccc/=6=88.9%1+迫1.8106M7功率与效率不计各种损失时,泵的理论功率NtbMbQb-bMip创署1.8?1。628
12、3(kw)泵实际的输入功率Nbr为1Nbr=2nbMgb=2nbMtbmb2P仓I迹1.6仓U106601=282(kw)0.889泵实际的输出功率Nbc为山东科技大学继续教育学生毕业论文用纸Nbc=,PbQ=b,pQgt=33创1.6106?954267(kw)定义泵的总效率列为输出功率Nbc与输入功率Ng之比,即NbcPbQtbhgbhb=二丁=hgbhmb=0.889?0.970.86Nbr2pMtbhmb上式表明,泵总效率为容积效率与机械效率之积。对于轴向柱塞泵,总效率一般为hb=0.850.9,上式满足要求。山东科技大学继续教育学生毕业论文用纸2直轴式轴向柱塞泵运动学及流量品质分析泵
13、在一定斜盘倾角下工作时,柱塞一方面与缸体一起旋转,沿缸体平面做圆周运动,另一方面又相对缸体做往复直线运动。这两个运动的合成,使柱塞轴线上任一点的运动轨迹是一个椭圆。止匕外,柱塞还可能有由于摩擦而产生的相对缸体绕其自身轴线的自转运动,此运动使柱塞的磨损和润滑趋于均匀,是有利的。柱塞运动学分析柱塞运动学分析,主要是研究柱塞相对缸体的往复直线运动。即分析柱塞与缸体做相对运动时的行程、速度和加速度,这种分析是研究泵流量品质和主要零件受力状况的基础。柱塞行程S图2.1为一般带滑靴的轴向柱塞运动分析图。若斜盘倾斜角为尸,柱塞分布圆半径为Rf,缸体或柱塞旋转角为a,并以柱塞腔容积最大时的上死点位置为0,则对
14、应于任一旋转角a时,图2.1柱塞运动分析h=Rf-Rfcosa所以柱塞行程S为s=htgg=iR-cosgtg当a=1800时,可得最大行程Smax为SmaX=2Rftgg=Dftgg39?tg18O03mm柱塞运动速度分析v将式s=htg丫=R(1cos)tg尸对时间微分可得柱塞运动速度v为dsdsdau=.=Rfwtggsinadtdadt当a=90。及270。时,sina=±1,可得最大运动速度5ax为|umaX=Rfwtgg=19.5创15002p.tg15O=819(mm/s)60式中w为缸体旋转角速度,w=-。t柱塞运动加速度a将口.=k=%.四=Rf0tgysina对时
15、间微分可得柱塞运动加速度a为dtdadta="=&.-=Rf82tgCcosadtdadt当a=0°及180°时,cos=±1,可得最大运动加速度amax为<500-2P圭129(m/s)60,柱塞运动的行程s、速度v、加速度a与缸体转角a的关系如图2.2所示。图2.2柱塞运动特征图2.2滑靴运动分析39八,、O=40.4(mm)cosl5研究滑靴的运动,主要是分析它相对斜盘平面的运动规律,即滑靴中心在斜盘平面xOy内的运动规律(如图2.3),其运动轨迹是一个椭圆。椭圆的长、短轴分别为长轴2b=空=cosg39mm)短轴2a=2R=设柱塞在
16、缸体平面上A点坐标为x=Rsinay=Rcosa如果用极坐标表示则为矢径Rh=卜+y2=RfJ-tg+cos?极角二arctg(coscosa)滑靴在斜盘平面xoy内的运动角速度叫为dqwcogWh-dt-cosa+c(2gsJian由上式可见,滑靴在斜盘平面内是不等角速度运动,当a=±、3n时,«h22最大(在短轴位置)为1500,_wwhmax-cosg602pcos15=162(rad/s)当a=0、n时,*最小(在长轴位置)为1500八a,o,、whmin=wcosg=202pcos15=152(rad/s)60由结构可知,滑靴中心绕o'点旋转一周(2打)的
17、时间等于缸体旋转一周的时间。因此,其平均旋转角速度等于缸体角速度,即1500wap=w=?2P157(rad/s)p60山东科技大学继续教育学生毕业论文用纸3柱塞受力分析与设计柱塞是柱塞泵主要受力零件之一。单个柱塞随缸体旋转一周时,半周吸油、一周排油。柱塞在吸油过程与在排油过程中的受力情况是不一样的。下面主要讨论柱塞在排油过程中的受力分析,而柱塞在吸油过程中的受力情况在回程盘设计中讨论。3.1柱塞受力分析图3.1是带有滑靴的柱塞受力分析简图。L'i图3.1柱塞受力分析作用在柱塞上的力有:山东科技大学继续教育学生毕业论文用纸3.1.1柱塞底部的液压力R柱塞位于排油区时,作用于柱塞底部的轴
18、向液压力兄为Pb=pd;pma)=p仓1(2010仓I)406=101N2560()44式中Rax为泵最大工作压力。柱塞惯性力Pb柱塞相对缸体往复直线运动时,有直线加速度a,则柱塞轴向惯性力玲为Gz2PB=-mza=-fggos=a101(N)g式中mz、Gz为柱塞和滑靴的总质量。惯性力PB方向与加速度a的方向相反,随缸体旋转角a按余弦规律变化。当a=0。和180。时,惯性力最大值为pBmax|=GRfW2tgg=06创19.510-3仓I15002P主?tg15O243(N)g10俄60离心反力P柱塞随缸体绕主轴作等速圆周运动,有向心加速度at,产生的离心反力P通过柱塞质量重心并垂直轴线,是
19、径向力。其值为Pt=mzat=Rfw2=2与=907(N)gtg15斜盘反力N斜盘反力通过柱塞球头中心垂直于斜盘平面,可以分解为轴向力P及径向力T0即P=Ncog=125?0cOos151N21T=Nsirg=125605°in15N3250()轴向力P与作用于柱塞底部的液压力Pb及其它轴向力相平衡。而径向力T则对主轴形成负载扭矩,使柱塞受到弯矩作用,产生接触应力,并使缸体产生倾倒力矩。柱塞与柱塞腔壁之间的接触应力m和P2该力是接触应力R和P2产生的合力。考虑到柱塞与柱塞腔的径向间隙远小于柱塞直径及柱塞腔内的接触长度。因此,由垂直于柱塞腔的径向力T和离心力Pf引起的接触应力P1和P2
20、可以看成是连续直线分布的应力。摩擦力P1f和P,f柱塞与柱塞腔壁之间的摩擦力Pf为Pf=(P+P2)f=(20100+5823)?0.12592.3(N)式中f为摩擦系数,常取f=0.050.12,这里取0.1。分析柱塞受力,应取柱塞在柱塞腔中具有最小接触长度,即柱塞处于上死点时的位置。此时,N、口和P2可以通过如下方程组求得%y=0Nsin,-RP2Pt=0;z二0Ncosg-fP1-fP2-Pb-Ps=0'、Mg=0骣l。-P16少-l0+k工£dz+fP2-Ptlt=02即12;fdzP2?少-imfP1万式中l0柱塞最小接触长度,根据经验l0=(1.5V2)d,这里取
21、l0=2d=78mm;l柱塞名义长度,根据经验l=(2.7V3.7)d,这里取l0=3d=117mm;lt柱塞重心至球心距离,1t=l0-l2=78-57.6=20.4mm以上虽有三个方程,但其中l2也是未知数,需要增加一个方程才能求解。根据相似原理有又有1P1=P121P21Pz2所以Pl(lo2)2P2lf将式P1=2(lo-l2)22代入Nsin?-P1+p2+pt=0求解接触长度l算,匹2巨方程用离心力P相对很小可以忽略,得2。为简化计m品77.8QW573=16将式2P1=0。-12)P2ll代入Ncos?一fp1-fp2-Pb-Ps=0可得P二(Nsing+p)(l0-J2=(57
22、创103sin15O+122.5)?事I2堂20.1(kN),6l0l-4j-3fZd0l6J781-7?4278a1J30.l2=-12-6fd-6l?2117iJ60-139P2=Nsing+R=57创103sin15O+122.5(I0-12)1J(78-57.6)2112117=5823(N)将以上两式代入党-一多P2第-,f吟+fp2+-讯二。可得Pb+PB+jf匕1256+01+01创0.1cog-fjsigic(Os150.111。祟5172静式中4为结构参数。2(10-12);12x(78-57.6)2+1117(10-12)2.12-1x(78-57.6)2117=1.78-
23、13.2柱塞设计柱塞结构型式轴向柱塞泵均采用圆柱形柱塞。根据柱塞头部结构,可有以下三种形式:点接触式柱塞,如图3.2(a)所示。这种柱塞头部为一球面,与斜盘为点接触,其零件简单,加工方便。但由于接触应力大,柱塞头部容易磨损、剥落和边缘掉块,不能承受过高的工作压力,寿命较低。这种点接触式柱塞在早期泵中可见,现在很少有应用。线接触式柱塞,如图3.2(b)所示。柱塞头部安装有摆动头,摆动头下部可绕柱塞球窝中心摆动。摆动头上部是球面或平面与斜盘或面接触,以降低接触应力,提高泵工作压。摆动头与斜盘的接触面之间靠壳体腔的油液润滑,相当于普通滑动轴承,其Ipv值必须限制在规定的范围内。带滑靴的柱塞,如图3.
24、2(c)所示。柱塞头部同样装有一个摆动头,称滑靴,可以绕柱塞球头中心摆动。滑靴与斜盘间为面接触,接触应力小,能承受较高的工作压力。高压油液还可以通过柱塞中心孔及滑靴中心孔,沿滑靴平面泄漏,保持与斜盘之间有一层油膜润滑,从而减少了摩山东科技大学继续教育学生毕业论文用纸擦和磨损,使寿命大大提高。目前大多采用这种轴向柱塞泵。(a)(b)(c)图3,2柱塞结构型式图3.3封闭薄壁柱塞从图3.2可见,三种型式的柱塞大多做成空心结构,以减轻柱塞重量,减小柱塞运动时的惯性力。采用空心结构还可以利用柱塞底部高压油液使柱塞局部扩张变形补偿柱塞与柱塞腔之间的间隙,取得良好的密封效果。空心柱塞内还可以安放回程弹簧,
25、使柱塞在吸油区复位。但空心结构无疑增加了柱塞在吸排油过程中的剩余无效容积。在高压泵中,由于液体可压缩性能的影响,无效容积会降低泵容积效率,增加泵的压力脉动,影响调节过程的动态品质。因此,采用何种型式的柱塞要从工况条件、性能要求、整体结构等多方面权衡利弊,合理选择。航空液压泵通常采用图3,3所式的封闭壁结构。这种结构不仅有足够的刚度,而且重量减轻10%20%剩余无效容积也没有增加。但这种结构工艺比较复杂,需要用电子束焊接。3.2,2柱塞结构尺寸设计柱塞直径dZ及柱塞分布塞直径Df柱塞直径dz、柱塞分布塞直径Df和柱塞数Z都是互相关联的。根据统计资料,在缸体上各柱塞孔直径dz所占的弧长约为分布圆周
26、长nDf的75%即注=0.75呐由此可得m=匕?Z9=3.82dx0.75p0.75p式中m为结构参数。m随柱塞数Z而定。对于轴向柱塞泵,其m值如表3,1所小。Z7911m3.13.94.5表3.1当泵的理论流量Qfb和转速nb根据使用工况条件选定之后,根据流量公式可得柱塞直径dZ为dZ=3!-20.3mpzntgg由上式计算出的dZ数值要圆整化,并应按有关标准选取标准直径,应选取20mm.柱塞直径dx确定后,应从满足流量的要求而确定柱塞分布圆直径Df,即Df=2=1,9(5=mmpdxtggZnb柱塞名义长度l由于柱塞圆球中心作用有很大的径向力T,为使柱塞不致被卡死以及保持有足够的密封长度,
27、应保证有最小留孔长度10,一般取:pb<20Mpa10=(1.41d8)Pb_30Mpalo=(2,2.)因此,柱塞名义长度1应满足:1?0ma+1m式中Sma-一柱塞最大行程;1min=0.2dz=7.8mm。1=(2.73d5)1=(3.24.d2)1min-一柱塞最小外伸长度,一般取根据经验数据,柱塞名义长度常取:Pb£20Mpapb一30Mpa这里取1=3d=117mm柱塞球头直径d1按经验常取d1=(0.7V0.8)dz,如图3.4所示。图3.4柱塞尺寸图山东科技大学继续教育学生毕业论文用纸为使柱塞在排油结束时圆柱面能完全进入柱塞腔,应使柱塞球头中心至圆柱面保持一定的
28、距离ld,一般取ld=(0.4V0.55)dz,这里取ld=0.5dz=19.5mm。柱塞均压槽高压柱塞泵中往往在柱塞表面开有环行均压槽,起均衡侧向力、改善润滑条件和存储赃物的作用。均压槽的尺寸常取:深h=0.30.7mm间距t=210mm实际上,由于柱塞受到的径向力很大,均压槽的作用并不明显,还容易滑伤缸体上柱塞孔壁面。因此,目前许多高压柱塞泵中的柱塞不开设均压槽。3.2.3柱塞摩擦副比压P、比功FJ验算对于柱塞与缸体这一对摩擦副,过大的接触应力不仅会增加摩擦副之间的磨损,而且有可能压伤柱塞或缸体。具比压应控制在摩擦副材料允许的范围内。取柱塞伸出最长时的最大接触应力作为计算比压值,则2d22
29、0.1103.、pmax=3=21Mpa<p=30Mpadzl13则0-320.4HLHJ"柱塞相对缸体的最大运动速度Vmax应在摩擦副材料允许范围内,即vmax=Rfwtgg=19.能力04.66tg15O?10-30.55m/s<v=8m/s由此可得柱塞缸体摩擦副最大比功pmaxVmax为2P1.pmaxvmax=Rfwtgg=21?0.5511.55Mpa.m/s<pv=60Mpa.m/sdzl1上式中的许用比压pl、许用速度Ivl、许用比功pvl的值,视摩擦副材料而定,可参考表3.2。材料牌号许用比压Ip(Mpa)许用滑动速度v(m/s)许用比功pv(Mpa
30、.m/s)ZQAL9430860ZQSn10-115320P球磨铸铁10518表3.2材料性能柱塞与缸体这一对摩擦副,不宜选用热变形相差很大的材料,这对于油温高的泵更重要。同时在钢表面喷镀适当厚度的软金属来减少摩擦阻力,不选用铜材料还可以避免高温时油液对铜材料的腐蚀作用。4滑靴受力分析与设计目前高压柱塞泵已普遍采用带滑靴的柱塞结构。滑靴不仅增大了与斜盘的接触面、减少了接触应力,而且柱塞底部的高压油液,经柱塞中心孔九'和滑靴中心孔”,再经滑靴封油带泄露到泵壳体腔中。由于油液在封油带环缝中的流动,使滑靴与斜盘之间形成一层薄油膜,大大减少了相对运动件间的摩擦损失,提高了机械效率。这种结构能适
31、应高压力和高转速的需要。滑靴受力分析液压泵工作时,作用于滑靴上有一组方向相反的力。一是柱塞底部液压力图把滑靴压向斜盘,称为压紧力py;另一是由滑靴面直径为口的油池产生的静压力pn与滑靴封油带上油液泄漏时油膜反力pf2,二者力图使滑靴与斜盘分离开,称为分离pf0当压紧力与分离力相平衡时,封油带上将保持一层稳定的油膜,形成静压油垫。下面对这组力进行分析。分离力pf图111为柱塞结构与分离力分布图。根据流体学平面圆盘放射流动可知,油液经滑靴封油带环缝流动的泄漏量q的表达式为二'3(pi-p2)qR一6JlnR2Ri若pz=0,则q=A6日lnR2R式中6为封油带油膜厚度。封油带上半径为r的任
32、仪点压力分布式为若pz=0,则Pr=(P-P2)p2l这RiInR2R2InR从上式可以看出,封油带上压力随半径增大而呈对数规律下降。封油带上总的分离力pf可通过积分求得。图4.1滑靴结构及分离力分布如图4.1,取微环面2二rdr,则封油带分离力Pf2为R2Pf2=.R1Pr2二dr=71InR2Ri油池静压分离力pf1为总分离力pf为Pf1=-总Pi22P(R;-R2)Pf=Pf1+Pf2=P1=2InR2R12(14-11)P?20.12ln14116105(KN)4.1.2压紧力Py滑靴所受压紧力主要由柱塞底部液压力Pb引起的,Py=Pb=Pd2Pbcosg4cosg12560cos15
33、0=13(KN)4.1.3力平衡方程式当滑靴受力平衡时,应满足下列力平衡方程式Py=Pf二d2PbJ(R;R2)4zcos2ln旦R,2R2dzIn,Pi_二R1Pb-2(R;-R2)cos将上式代入式q=侬年中,得泄漏量为pd3pbd;2ZT2:12m(R2-R)cosg6lnR2Ri=3(L/min)0.0013仓U20.1103仓4(3910-3)2p12创210-7?(142112)仓00-6cos15O除了上述主要力之外,滑靴上还作用有其他的力。如滑靴与斜盘间的摩擦力,由滑靴质量引起的离心力,球较摩擦力,带动滑靴沿斜盘旋转的切向力等。这些力有的使滑靴产生自转,有利于均匀摩擦;有的可能
34、使滑靴倾倒而产生偏磨,并破坏了滑靴的密封,应该在滑靴结构尺寸设计中予以注意。滑靴设计滑靴设计常用剩余压紧力法。剩余压紧力法剩余压紧力法的主要特点是:滑靴工作时,始终保持压紧力稍大于分离力,使滑靴紧贴斜盘表面。此时无论柱塞中心孔d。还是滑靴中心孔d。,均不起节流作用。静压油池压力P1与柱塞底部压力仇相等,即P1=PbmR2dzIn将上式代入式=一一温一7中,可得滑靴分离力为pb2(R;-R2)cos二代-R2)(14-112)二10/R212560=3.1(N)2lnR22ln14R111设剩余压紧力.甲y=Ry-pf,则压紧系数中=上=0.050.,15里取0.1。Py滑靴力平衡方程式即为pf
35、=(1-:py=(-10.1)=3.1N2.7用剩余压紧力法设计的滑靴,油膜厚度较薄,一般为0.0080.01mm左右,滑靴泄漏量少,容积效率教高。但摩擦功率较大,机械效率会降低。若选择适当的压紧系数邛,剩余压紧力产生的接触应力也不会大,仍有较高的总效率和较长的寿命。剩余压紧力法简单适用,目前大多数滑靴都采用这种方法设计。滑靴结构型式与结构尺寸设计滑靴结构型式滑靴结构有如图4.2所示的几种型式。图中(a)所示为简单型,静压油池较大,只有封油带而无辅助支承面。结构简单,是目前常用的一种型式。图4.2(a)图中(b)所式滑靴增加了内、外辅助支承面。减小了由剩余压紧力产生的比压,同时可以克服滑靴倾倒
36、产生的偏磨使封油带被破坏的情况。图4.2(b)图中(C)所示的滑靴在支承面上开设了阻尼形螺旋槽与缝隙阻尼共同形成液阻。从而实现滑靴油膜的静压支承。图4.2(c)滑靴结构型式结构尺寸设计下面以简单型滑靴为例,介绍主要结构尺寸的选择和计算。滑靴外径D2滑靴在斜盘上的布局,应使倾角尸=0时,互相之间仍有一定的间隙S,如图4.3所示。滑靴外径D2为D2=Dfsins=39s4n=0.2mn4()Z9一般取s=0.21,这里取0.2。油池直径D1初步计算时,可设定匕=0.6V0.8,这里取0.8.D2D1=0.8D2=0.84=3.2mm中心孔d0、d0"S长度l0如果用剩余压紧力法设计滑靴,
37、中心孔d0和d。'可以不起节流作用。为改善加工工艺性能,取d0(或d°)=0.81.5mm如果采用静压支承或最小功率损失法设计滑靴,则要求中心孔d0(或d0')对油液有较大的阻尼作用,并选择最佳油膜厚度60=0.01V0.02mm。节流器有以下两种型式:图4.3滑靴外径D2的确定(a)节流器采用节流管时,常以柱塞中心孔d。'作为节流装置,如图4.1所示。根据流体力学细长孔流量q为4-do(Pb-Pi)q二12810K式中do、I。一一细长管直径、长度;K一一修正系数;R<doK=1-°=12.641。11-0.065doRx把上式代入滑靴泄漏量
38、公式整理后可得节流管尺寸为=2.28二、R2可得641n2二do(PbRrPi)128口10Kdo4lo1283Kpi6J1nR2RPb61nR21-a10.065doRx代入数据可以求得do=1mmlo=8mm式中a为压降系数,a=2。当a=2=o.667时,油膜具有最大刚度,承载Pb3能力最强。为不使封油带过宽及阻尼管过长,推荐压降系数a=o.8o.9,这里取o.8。(b)节流器采用节流孔时,常以滑靴中心孔do作为节流装置,如图4.1所示。根据流体力学薄壁孔流量q为二d02gqC(Pb-p)4,r式中C为流量系数,一般取C=o.6o.7。一.3把上式代入q=以中,有6口1nR2整理后可得节
39、流孔尺寸3d:=公_.而代入数据可以求3ln&c2g1-a,R;r覆行d0=1mm以上提供了设计节流器的方法。从上两式中可以看出,采用节流管的柱塞一滑靴组合,公式中无粘度系数说明油温对节流效果影响较小,但细长孔的加工工艺性较差,实现起来有困难。采用滑靴一中心孔为薄壁孔节流,受粘度系数N的影响,油温对节流效果影响较大,油膜稳定性也要差些。但薄壁孔加工工艺性较好。为防止油液中污粒堵塞节流器,节流器孔径应之0.4mmo5配油盘受力分析与设计配油盘是轴向柱塞泵主要零件之一,用以隔离和分配吸、排油油液以及承受由高速旋转的缸体传来的轴向载荷。它设计的好坏直接影响泵的效率和寿命。配油盘受力分析不同类
40、型的轴向柱塞泵使用的配油盘是有差别的,但是功用和基本构造则相同。图5.1是常用的配油盘简图。液压泵工作时,高速旋转的缸体与配油盘之间作用有一对方向相反的力;即缸体因柱塞腔中高压油液作用而产生的压紧力py;配油窗口和封油带油膜对缸体的分离力pf。1吸油窗2一排油窗3一过度区4减振槽5内封油带6外封油带7辅助支承面图5.1配油盘基本构造压紧力Ry压紧力是由于处在排油区是柱塞腔中高压油液作用在柱塞腔底部台阶上,使缸体受到轴向作用力,并通过缸体作用到配油盘上。1对于奇数柱塞泵,当有1(Z+1)个柱塞处于排油区时,压紧力Pw为2yZ1二291二06py1=2.4d2zP产Pmax391061256024
41、N501当有(Z-1)个柱塞处于排油区时,压紧力Ry?为Z-1二29-1二2一6Py2=.crzp尸pmin391p61256019320y2424平均压紧力Py为11Py(Py1Py2)(2415019320)=21735(N)y2yy2分离力Pf分离力由三部分组成。即外封油带分离力Pf1,内封油带分离力Pf2,排油窗高压油对缸体的分离力。对于奇数泵,在缸体旋转过程中,每一瞬时参加排油的柱塞数量和位置不同。封油带的包角是变化的。实际包角比配油盘油窗包角中。有所扩大,如图5.2所示。当有1(Z+1)个柱塞排油时,封油带实际包角、为112二2二2二1=(Z-1)a30=(9-1)n-=22993
42、1当有,Z-1)个柱塞排油时,封油带实际包角匕为112二2二2(Z-3)a30(9-3),2299平均有Z个柱塞排油时平均包角中为2P11-2(12)=2Z-2a)a08、7.4-99式中a柱塞间距角,a=;Z30柱塞腔通油孔包角,这里取30外封油带分离力pf1Py从R2外封油带上泄漏流量是源流流动,对封油带任仪半径上的压力到R积分,并以中p代替2n,可得外封油带上的分离力Pn为图5.2封油带实际包角的变化Pf14小”jEPbR2(172-152)10”4ln171512560-911210上12560=3.4(N)外封油带泄漏量为为qi=p、:3Pb7-Q70.0013125609R7171
43、2ln口12210inR,15=92(ml)内封油带分离力Pf2内封油带上泄漏流量是汇流流动,同理可得内封油带分离力Pf2为Pf24inR3R4.二2Pb2R;Pb(92-112)10上7.114210in9-1121062x12560=5.2N内封油带泄漏量q2为q23Pb0.0011256012lnR312210,in11R49=i47mi)P22、Pf3(R2-R3)Pb2排油窗分离力Pf3(15-121)12560N1.6(9配油盘总分离力Pf1Pf=PnP2Pb3.45.21.总泄漏量q为q=q1q2-92147=239(N)配油盘设计配油盘设计主要是确定内封油带尺寸、吸排油窗口尺寸
44、以及辅助支承面各部分尺寸。过渡区设计为使配油盘吸排油窗之间有可靠的隔离和密封,大多数配油盘采用过渡角a1大于柱塞腔通油孔包角a0的结构,称正重迭型配油盘。具有这种结构的配油盘,当柱塞从低压腔接通高压腔时,柱塞腔内封闭的油液会受到瞬间压缩产生冲击压力;当柱塞从高压腔接通底压腔时,封闭的油液会瞬间膨胀产生冲击压力。这种高低压交替的冲击压力严重降低流量脉动品质,产生噪音和功率消耗以及周期性的冲击载荷。对泵的寿命影响很大。为防止压力冲击,我们希望柱塞腔在接通高低压时,腔内压力能平缓过渡从而避免压力冲击。配油盘主要尺寸确定(图5.3)图5.3配油盘主要尺寸确定(1)配油窗尺寸配油窗口分布圆直径一般取等于
45、或小于柱塞分布圆直径Df配油窗口包角Q,在吸油窗口包角相等时,取-"一a为避免吸油不足,配油窗口流速应满足Qtb=2.3卜0I-3m/sF2满足要求式中Qtb泵理论流量;(Pf2配油窗面积,F2=y(r2-喏);101许用吸入流速,匕01=23m/s由此可得_2Qt_:0V。1(2)封油带尺寸设内封油带宽度为b2,外封油带宽度为h,bi和b2确定方法为:考虑到外封油带处于大半径,加上离心力的作用,泄漏量比内封油带泄漏量大,取b1略大于b2,即B=RR2毛.12家b2=R3-R=(0.1V0.125)dz当配油盘受力平衡时,将压紧力计算示与分离力计算示带入平衡方程式可得Ri2-R2R;
46、-RfZd;(1-)1Ri-1R3-2.:In1In乙pR2R联立解上述方程,即可确定配油盘封油带尺寸R=17mm、R2=15mmR3=11mm、R4=9mm。验算比压p、比功pv为使配油盘的接触应力尽可能减小和使缸体与配油盘之间保持液体摩擦,配油盘应有足够的支承面积。为此设置了辅助支承面,如图5.3中的D5、D60辅助支承面上开有宽度为B的通油槽,起卸荷作用。配油盘的总支承面积F为2222F=(D2-D;D;-D2)-(F1F2F3)4式中F1辅助支承面通油槽总面积;Fi=KB(R-&)(K为通油槽个数,B为通油槽宽度)F2、F3吸、排油窗口面积。根据估算:F=1034(mm2)配油
47、盘比压p为PyPt2KB(R-R5),p'1-284pa<IplF11d式中py配油盘剩余压紧力;d中心弹簧压紧力;Ip1根据资料取300pa;在配油盘和缸体这对摩擦副材料和结构尺寸确定后,不因功率损耗过大而磨损,应验算pv值,即pv=pvp一Lpv122p%0D)2284-x1500二式中vp为平均切线速度,vp=(D4+D)二n_2(1820)=458:二600Kgf/cmpv根据资料取600Kgf/cm26缸体受力分析与设计缸体的稳定性在工作过的配油盘表面上常看到在高压区一侧有明显的偏磨现象,偏磨会使缸体与配油盘间摩擦损失增大,泄漏增加,油温升高,油液粘性和润滑性下降,而影
48、响到泵的寿命,造成偏磨的原因,除了可能有受力不平衡外,主要是缸体力矩不平衡,使缸体发生倾倒。缸体主要结构尺寸的确定通油孔分布圆半径R和面积F图6.1柱塞腔通油孔尺寸为减小油液流动损失,通常取通油孔分布圆半径R与配油窗口分布圆半径rf相等。即R2R31511Rf13mm22式中R、R为配油盘配油窗口内、外半径。通油孔面积近似计算如下(如图6,1所示)。Fa=laba-0.215b2=0.45392=684(mm2)式中la通油孔长度,la七dz;ba通油孔宽度,ba%0.5dz;6.2.2缸体内、外直径Di、D2的确定为保证缸体在温度变化和受力状态下,各方向的变形量一致,应尽量使各处壁厚一致(如
49、图6.2),即61=62=4。壁厚初值可由结构尺寸确定。然后进行强度和刚度验算。缸体强度可按厚壁筒验算'Pbddw-dz22(3922)2392_22(3922)-39式中dw筒外径,dw=dz+26。12560=129(kgf/cm2)<I-.1ZQAL94:k】=600800(kgf/cm2)J缸体材料许用应力,对图6.2缸体结构尺寸缸体刚度也按厚壁筒校验,其变形量为d.39.:、.=生(:/R)-(20.312560)=0.0038mm<I:.I2F21034式中E缸体材料弹性系数;材料波桑系数,对刚质材料N=0.230.30,青铜N=0.320.35;允许变形量,一
50、般刚质缸体取"0.0065mm,青铜则取U6<0.0048mm。符合要求。6.2.3缸体高度H从图62中可确定缸体高度H为H=0&axl3l573970.539=12r2.n5(式中l0柱塞最短留孔长度;a柱塞最大行程;为便于研磨加工,留有的退刀槽长度,尽量取短;一缸体厚度,一般l4=(0.40.6)dz,这里取0.5dz。7柱塞回程机构设计直轴式轴向柱塞泵一般都有柱塞回程结构,其作用是在吸油过程中帮助把柱塞从柱塞腔中提伸出来,完成吸油工作,并保证滑靴与斜盘有良好的贴合。固定间隙式回程结构使用于带滑靴的柱塞。它的特点是在滑靴颈部装一回程盘2,如图7.1,并用螺纹环联结在
51、斜盘上。当滑靴下表面与回程盘贴紧时,应保证滑靴上表面与斜盘垫板3之间有一固定间隙,并可调。回程盘是一平面圆盘,如图7.1所示。盘上dh为滑靴安装孔径,Dh为滑靴安装孔分布圆直径。这两个尺寸是回程盘的关键尺寸,设计不好会使滑靴颈部及肩部严重磨损。下面主要研究这两个尺寸的确定方法。如前所述,滑靴在斜盘平面上运动轨迹是一个椭圆,椭圆的两轴是短轴a=2R=219.53h9m2Rf219.5一、长轴b=;=n=41.5mm)cosmaxcos_20dh和Dh的选择应保证泵工作时滑靴不与回程盘发生干涉为原则。因此,Dh取椭圆长、短轴的平均值较合理,即abRfDh=Rf'=19.54U5mm1()2COSnax从图7.1中可以看出回程盘上安装孔中心O与长、短轴端点A或B的最大偏心距相等,且为emax,因而2emax2RfCOSmaxRf)Rf+f=(41.5x2)-61=22(mm)COS/max)1一.为了允许滑靴在任一方向偏离1emax,而不与回程盘干涉,回程盘的安2装孔径应比滑靴径部直径d大emax。同时,考虑到加工、安装等误差,应在图7.1回程盘结构尺寸安装孔与滑靴径部之间保留有适当间隙Jo这样安装孔的直径为dh=deax2J32221=33n(m)式中d滑靴颈部直径;J间隙,一般取J=0.51mm8斜盘力矩分析直轴式轴向柱塞泵通过泵的变量机构改变斜盘
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2015年11月8日吉林省公务员面试真题
- 湖南申论模拟55
- 书法协定合同协议2024年
- 二手房买卖协议书2024年
- 2024年房地产抵押合同范本
- 贵州行政职业能力测验真题2022年
- 事业单位聘用合同书范本12024年
- 浙江行政职业能力20
- AZ104-Renewal assassment 2024-10 考试认证题库
- 二手房交易资金监管服务协议书2024年
- 第十章 其他类型天然产物
- 2019版《压力性损伤的预防和治疗:临床实践指南》解读
- (2023)气瓶充装安全作业人员考试题库及答案
- 常用阿片类药物ppt
- 小学心理健康教育-我当哥哥姐姐了教学设计学情分析教材分析课后反思
- 不离婚互不干涉协议模板
- 2023学年完整公开课版世界的人口
- 走近湖湘红色人物智慧树知到课后章节答案2023年下湖南工商大学
- 软件项目提成方案
- 现金流量表模板(含公式)
- 装配式建筑设计研究与总结课件
评论
0/150
提交评论