版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、成绩评定表学生姓名班级学号专 业电子信息工程课程设计题目信号解调(QPSK)评语组长签字:成绩日期 年 月 日 课程设计任务书学 院信息科学与工程专 业电子信息工程学生姓名班级学号课程设计题目 信号解调(QPSK)课程设计目的与要求:(1)将模拟信号(QPSK调制)解调成数字信号。(2)对QPSK解调算法有初步的了解。(3)熟练使用CCStudio 3.1。工作计划与进度安排:2016年 11月26日 选题目查阅资料2016年 12月03日 查阅资料2016年 12月05日 - 2016年 01月 07日 上机调试2017年 01月01日 撰写课程设计报告、答辩指导教师: 年 月 日专业负责人
2、:年 月 日学院教学副院长:年 月 日 沈阳理工大学课程设计摘 要数字与模拟信号的调制解调是通信系统的核心。随着目前 DSP芯片的广泛应用, 用软件来实现数字信号的调制解调将变得更加方便快捷, 设备的微型化集成化也更容易达到。为了设计出一种适合无线传输的基带调制解调单元(模块 ), 以 TMS320C54x DSP芯片为基础, 对 QPSK解调的 DSP算法进行了研究, 重点讨论软件设计, 并通过仿真证明该算法能够完成 QPSK解调的全部功能。关键词:DSP ;TMS320C54x;QPSK;解调II 目 录1 设计任务及目的11.设计任务12.设计目的12 设计原理13 QPSK解调的DSP
3、实现81. Main.c82. psk_asm.asm93. Qpsk.cmd114 结果125.结论与体会146 参考文献15IV 信号解调(QPSK)1 设计任务及目的1.设计任务(1)将模拟信号(QPSK调制)解调成数字信号。(2)对QPSK解调算法有初步的了解。(3)熟练使用CCStudio 3.1。2.设计目的本设计的目的在于通过使用CCStudio3.1软仿真来实现DSP中的QPSK解调过程,学会原理图设计,了解QPSK解调算法以及解调过程。初步对QPSK解调进行程序设计,并在CCS开发环境下的软件调试,同时也加深学生对A/D实现过程和设计过程的理解。2 设计原理现代通信的各个领域
4、均向数字化方向发展,解调技术也不例外。现在针对QPSK调制方式,提出一种全新的数字解调算法。该算法允许本地载波由独立的固定频率振荡器产生,不需要锁相的反馈控制,而相干检测的所有其它功能均由数字信号处理模块完成。它的功能框图如图1所示。图1 QPSK全数字解调框图其中1是独立的接收载波频率,1/T是取样频率,T是QPSK的码组宽度。最后的计算机模拟结果表明算法不仅能正确的解调QPSK信号,而且可以跟踪载波的慢漂移。(一)QPSK解调方案1)全数字解调算法的提出参看上图,接收信号和接收端载波进行正交相乘之后,按1/T速率进行取样,则: (1)其中Ik、Qk为取样时刻同相和正交通路的样值,k是第k时
5、刻对应QPSK码的相位样值,k=kT+o其中是收发两端载波角频率之差,T是QPSKM码组宽度,o是初始相差。nI(k)、nQ(k)是同相、正交通道的噪声样值,它们也是呈高斯分布的白噪声,从Ik、Qk的表达式中可以看到,Ik、Qk中包含了全部码字信息及收发载波频差的信息,于是可以采用数字信号处理方法来恢复码源信息并估计出收发载波频差。2)全数字解调算法的推导设收发载波角频率差为,一般说载波飘移较慢,可以认为它在一段时间内不变,令=T, 则 (2)其中Ik、Qk是可以观察的序列,k、待估计,由前式得 (3)其中n(k) 是k时刻相位噪声。令则 (4)其中 (5)如果在收端时k做出了正确的判断k,则
6、收发载波频差的第k个观察值 (6)规定取模2 运算的值域为(-,),通常这个观察序列k采用Kalman一阶预测算法,可以估计第k+1个k+1。如果已经有第k个频差的估计值,并假定估计无误,则取 (7)由估计出的k就可以按差分规则得到k,于是可以判断出它是QPSK哪一个码组,从而恢复出QPSK信号的码元信息序列。根据前面的分析可以得出如下数字信号处理框如图2,它是一个交叉耦合估计方案。3)Kalman估计法估计载波频差利用Kalman一步预测算法,可以得到载波频差估计的Kalman滤波算法。 (8)图2 QPSK全数字解调的数字信号处理框图其中K为滤波器增益系数,是一个可调参数。 (9)从第四部
7、分计算机模拟结果可以看出,这里迭代初值0选取范围较大,只要落在收敛范围内即可,一般以发射端标称频率未初始。(二)QPSK全数字解调的噪声性能分析1)算法对载波频差估计的均值可以把坐标参考系旋转到k处,这样噪声可以看成试(r, )的矢量,当它为窄带高斯白噪声时, r是瑞利分布,是在(-,)上均匀分布。 (10)则有 (11)由此可以得 (12)又因噪声是白色的,前后时刻不相关,即 (13)另外有: (14)因为在(-,)之间有mod= ,所以 (15)也就是说对收发载波频差的观察是无偏的。另外若在高信噪比条件下,k较大时,k接近,且抖动不大,则从Kalman预测公式中有 (16)2)算法对载波估
8、计值得方差图3 加性噪声干扰的角调制信号矢量设信号S(t)=cos(0t+),加性噪声。 (17)它是零均值,则信号加噪声成为 (18) 其脚调制信号矢量图如上图所示,则相位噪声表达式为: (19)在高信噪比条件下在大部分时间里有Rn(t)<< ,所以 (20)令(t)=0,则 (21)因此相位的抖动近似可以看成是零均的。现在再回过来看全数字解调算法中频差观察值。 (22)于是我们可以得到噪声引起载波频差观察值的抖动方差为: (23)现在再看Kalman滤波后对频差估计的方差,在高信噪比条件下,我们有估计k接近,且其抖动也不大,则可得出下式: (24)两边求方差(25)根据前面的推
9、导进一步得出:(26)再有,在k较大时,通过计算得出: (27)令平均信噪比,则 (28)即算法对频差估计的抖动方差和输入端信噪比成反比。3)算法误码率推导由前述算法可知 (29)在高信噪比,k足够大时,上述三式可简化为 (30)在前面的推导中已知n(k)为均零,因此k亦为高斯变量,相位估计也是高斯变量。 (31)令x为均零,方差的高斯变量,其概率分布 (32)设发送的序列为先验等概,则由最小错误辨别准则,x的判决区近似为及正确判决概率 (33)误码率 (34)3 QPSK解调的DSP实现1. Main.cextern void qpsk(); #in
10、clude "C54MATH.H" DATA x256; DATA y256;/正弦信号 DATA Pulse256;/被调信号 DATA PskSignal256;/QPSK调制信号DATA PskSignal01256; DATA RecMeg256; DATA RecSig256; #define N 256 void main() I
11、nt i,j;for(i=0;i<N;i+)xi=i*0x1000; sine(x,y,N); for(i=0;i<N;i+) j=i/32;switch (j%4) case 0: Pulsei=-3; break; case
12、1: Pulsei=-1; break; case 2: Pulsei=1; break; case 3: Pulsei=3; break; /调用汇编函数 qpsk qpsk(); for(i=0;i<N;i+) for(;); 2. psk_asm.asm .title"psk_asm.as
13、m" .global _qpsk ;定义为全局变量,提供给C调用.global _y ;C程序变量.global _Pulse C程序变量 .global _PskSignal C程序变量 .mmregs &
14、#160; .text_qpsk: rsbx CPL stm #8-1,AR2 循环变量 256
15、/32=8stm #_y, AR4stm #_Pulse, AR3stm #_PskSignal, AR5loop: ld *AR3, Abc
16、60; phase0, AEQ 若为0状态信号,则相移0 sub #1, A addm #4, AR4 bc
17、60;phase1, AEQ 若为1状态信号,则相移pi/2 sub #1, Aaddm #8, AR4 bc phase2, AEQ 若为2状态信号,则相移pi sub #1, A addm #12, AR4 bc phase3, AEQ 若为3状态信号,
18、则相移3*pi/2pskend: addm #32, AR3 banz loop, *AR2- ret phase0: rpt #32-1 mvdd
19、160; *AR4+, *AR5+ b pskendphase1: rpt #32-1 mvdd *AR4+, *AR5+ addm #-36,AR4 b pskend phase
20、2: rpt #32-1 mvdd *AR4+, *AR5+ addm #-40,AR4
21、0;b pskend phase3: rpt #32-1 mvdd *AR4+, *AR5+ addm #-44, AR4
22、 b pskend .end 3. Qpsk.cmd-c -l rts.lib -l c54math.lib -stack 0x200 -heap 0x200 MEMORY
23、; PAGE 0: INT_PM_DRAM: origin = 0080h, length = 1000h PAGE 1:
24、160; INT_DM_1: origin = 1080h, length = 01000h &
25、#160; SECTIONS .text: > INT_PM_DRAM PAGE 0 .cinit: > INT_PM_DRAM PAGE 0
26、; .switch: > INT_PM_DRAM PAGE 0 .data: > INT_DM_1 PAGE 1 .stack: > INT_DM_1
27、160; PAGE 1 .bss: > INT_DM_1 PAGE 1 .sysmem: > INT_DM_1 PAGE 1
28、 .const: > INT_DM_1 PAGE 1 4 结果仿真结果图QPSK数字解调包括:模数转换、抽取或插值、匹配滤波、时钟和载波恢复等 。在实际的调谐解调电路中,采用的是非相干载波解调,本振信号与发射端的载波信号存在频率偏差和相位抖动,因而解调出来的模拟工、Q基带信号是带有载波误差的信号。这样的模拟基带信号即使采用定时准确的时钟进行取样判决,得到的数字信号也不是原来发射端的调制信号,误差的积累将导致抽样判决后的误码率增大,因此数字QP
29、SK解调电路要对载波误差进行补偿,减少非相干载波解调带来的影响。此外,ADC的取样时钟也不是从信号中提取的,当取样时钟与输入的数据不同步时,取样将不在最佳取样时刻进行所得到的取样值的统计信噪比就不是最高,误码率就高,因此,在电路中还需要恢复出一个与输入符号率同步的时钟,来校正固定取样带来的样点误差,并且准确的位定时信息可为数字解调后的信道纠错解码提供正确的时钟。校正办法是由定时恢复和载波恢复模块通过某种算法产生定时和载波误差,插值或抽取器在定时和载波误差信号的控制下,对A/D转换后的取样值进行抽取或插值滤波,得到信号在最佳取样点的值,不同芯片采用的算法不尽相同,例如可以采用据辅助法(DA)载波相位和定时相位联合估计的最大似然算法。QPSK是一种频谱利用率高、抗干扰性强的数调制方式, 它被广泛应用于各种通信系统中. 适合卫星广播。 例如, 数字卫星电视DVB2S 标准中, 信道噪声门限低至4. 5 dB, 传输码率达到45M bös, 采用QPSK 调制方式, 同时保证了信号传输的效率和误码性能. 通过本文介绍和程序示例可以清楚的看到QPSK解调在A/D中的作用。5.结论与体会 讨论一种 QPSK解调的 DSP实现方案, 该方案利用 CCS及 MATLAB仿真已证明能够实现QPSK的解调功能。此算法可以应用各种数字信号处理系统中的基带处理单元, 完
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年护士护理教育项目劳动合同3篇
- 二零二五年生物医药研发与临床试验合同6篇
- 二零二五版智能家居系统集成与装饰设计合同范本3篇
- 二零二五版高标准预制混凝土构件供应合同3篇
- 二零二五版租赁住宅配套设施租赁服务合同2篇
- 二零二五版家居用品经销代理合同范本3篇
- 二零二五版互联网公司高级经理任职及期权激励合同3篇
- 二零二五版便利店员工工作环境与设施改善服务合同3篇
- 湖南储备粮代储合同(2025年度)执行细则范本3篇
- 二零二五版地铁站商业广告位租赁及装修施工合同3篇
- 2024-2025学年成都高新区七上数学期末考试试卷【含答案】
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 2025年浙江杭州市西湖区专职社区招聘85人历年高频重点提升(共500题)附带答案详解
- 《数学广角-优化》说课稿-2024-2025学年四年级上册数学人教版
- “懂你”(原题+解题+范文+话题+技巧+阅读类素材)-2025年中考语文一轮复习之写作
- 2025年景观照明项目可行性分析报告
- 2025年江苏南京地铁集团招聘笔试参考题库含答案解析
- 2025年度爱读书学长参与的读书项目投资合同
- 电力系统分析答案(吴俊勇)(已修订)
- 化学-河北省金太阳质检联盟2024-2025学年高三上学期12月第三次联考试题和答案
- 期末复习试题(试题)-2024-2025学年四年级上册数学 北师大版
评论
0/150
提交评论